Estimation functions and uniformly most powerful tests for inverse Gaussian distribution
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 1, page 153-164
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topVladimirescu, Ion, and Tunaru, Radu. "Estimation functions and uniformly most powerful tests for inverse Gaussian distribution." Commentationes Mathematicae Universitatis Carolinae 44.1 (2003): 153-164. <http://eudml.org/doc/249204>.
@article{Vladimirescu2003,
abstract = {The aim of this article is to develop estimation functions by confidence regions for the inverse Gaussian distribution with two parameters and to construct tests for hypotheses testing concerning the parameter $\lambda $ when the mean parameter $\mu $ is known. The tests constructed are uniformly most powerful tests and for testing the point null hypothesis it is also unbiased.},
author = {Vladimirescu, Ion, Tunaru, Radu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test; inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test},
language = {eng},
number = {1},
pages = {153-164},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Estimation functions and uniformly most powerful tests for inverse Gaussian distribution},
url = {http://eudml.org/doc/249204},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Vladimirescu, Ion
AU - Tunaru, Radu
TI - Estimation functions and uniformly most powerful tests for inverse Gaussian distribution
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 1
SP - 153
EP - 164
AB - The aim of this article is to develop estimation functions by confidence regions for the inverse Gaussian distribution with two parameters and to construct tests for hypotheses testing concerning the parameter $\lambda $ when the mean parameter $\mu $ is known. The tests constructed are uniformly most powerful tests and for testing the point null hypothesis it is also unbiased.
LA - eng
KW - inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test; inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test
UR - http://eudml.org/doc/249204
ER -
References
top- Ter Berg P., Two pragmatic approaches to loglinear claim cost analysis, Astin Bulletin 11 77-90. MR0611038
- Ter Berg P., Deductibles and the inverse Gaussian distribution, Astin Bulletin 24 2 319-323.
- Chhikara R.S., Folks J.L., Estimation of the inverse Gaussian distribution function, J. Amer. Statist. Assoc. 69 , 345 2500-254. Zbl0282.62026
- Chhikara R.S., Folks J.L., The Inverse Gaussian Distribution: Theory, Methodology and Applications, New York, Marcel Dekker. Zbl0701.62009
- Edgeman R., Scott R., Pavur R., A modified Kolmogorov-Smirnov test for the inverse Gaussian distribution with unknown parameters, Commun. Statist.- Simula. 17 1203-1212.
- Essam K. Al Hussaini, Nagi S. Abd-El-Hakim, Bivariate inverse Gaussian, Annals of Institute of Statistics and Mathematics 33 , Part A 57-66. MR0613202
- Gunes H., Dietz D.C., Auclair P., Moore A., Modified goodness-of-fit tests for the inverse Gaussian distribution, Computational Statistics and Data Analysis 24 63-77. Zbl0900.62231
- Hadwiger H., Naturliche Ausscheidefunktionen fur Gesamtheiten und die Losung der Erneuerungsgleichung, Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker 40 31-39. MR0004465
- Henze N., Klar B., Goodness-of-Fit Tests for the inverse Gaussian distribution based on the empirical Laplace transform, Ann. Statist., forthcoming. Zbl1012.62047MR1910185
- Lehmann E.L., Testing Statistical Hypotheses, New York, Wiley. Zbl1076.62018MR0852406
- Mergel V., Test of goodness of fit for the inverse-gaussian distribution, Math. Commun. 4 191-195. Zbl0946.62007MR1746381
- Pavur R., Edgeman R., Scott R., Quadratic statistic for the goodness-of-fit test for the inverse Gaussian distribution, IEEE Trans. Reliab. 41 118-123.
- O'Reilly F., Rueda R., Goodness-of-fit for the inverse Gaussian distribution, Canad. J. Statist. 20 387-397. Zbl0765.62051MR1208351
- Rao C.R., Linear Statistical Inference and Its Applications, New York, Wiley. Zbl0256.62002MR0221616
- Schrodinger E., Zur Theorie der Fall-und Steigversuche an Teilchen mit Brownscher Bewegung, Physikalische Zeitschrift 16 289-295.
- Seshadri V., Inverse Gaussian Distributions, Oxford, Oxford University Press. Zbl0758.62027
- Seshadri V., The Inverse Gaussian Distribution - Statistical Theory and Applications, London, Springer. Zbl0942.62011MR1622488
- Shuster J., On the inverse Gaussian distribution, J. Amer. Statist. Assoc. 63 1514-1516. Zbl0169.21004MR0235653
- Tweedie M.C.K., Statistical properties of inverse Gaussian distributions I, II, Annals of Mathematical Statistics 28 362-377. Zbl0086.35202MR0110132
- Wald, A., Sequential Analysis, Wiley, New York. Zbl0091.14602MR0020764
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.