Estimation functions and uniformly most powerful tests for inverse Gaussian distribution

Ion Vladimirescu; Radu Tunaru

Commentationes Mathematicae Universitatis Carolinae (2003)

  • Volume: 44, Issue: 1, page 153-164
  • ISSN: 0010-2628

Abstract

top
The aim of this article is to develop estimation functions by confidence regions for the inverse Gaussian distribution with two parameters and to construct tests for hypotheses testing concerning the parameter λ when the mean parameter μ is known. The tests constructed are uniformly most powerful tests and for testing the point null hypothesis it is also unbiased.

How to cite

top

Vladimirescu, Ion, and Tunaru, Radu. "Estimation functions and uniformly most powerful tests for inverse Gaussian distribution." Commentationes Mathematicae Universitatis Carolinae 44.1 (2003): 153-164. <http://eudml.org/doc/249204>.

@article{Vladimirescu2003,
abstract = {The aim of this article is to develop estimation functions by confidence regions for the inverse Gaussian distribution with two parameters and to construct tests for hypotheses testing concerning the parameter $\lambda $ when the mean parameter $\mu $ is known. The tests constructed are uniformly most powerful tests and for testing the point null hypothesis it is also unbiased.},
author = {Vladimirescu, Ion, Tunaru, Radu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test; inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test},
language = {eng},
number = {1},
pages = {153-164},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Estimation functions and uniformly most powerful tests for inverse Gaussian distribution},
url = {http://eudml.org/doc/249204},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Vladimirescu, Ion
AU - Tunaru, Radu
TI - Estimation functions and uniformly most powerful tests for inverse Gaussian distribution
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 1
SP - 153
EP - 164
AB - The aim of this article is to develop estimation functions by confidence regions for the inverse Gaussian distribution with two parameters and to construct tests for hypotheses testing concerning the parameter $\lambda $ when the mean parameter $\mu $ is known. The tests constructed are uniformly most powerful tests and for testing the point null hypothesis it is also unbiased.
LA - eng
KW - inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test; inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test
UR - http://eudml.org/doc/249204
ER -

References

top
  1. Ter Berg P., Two pragmatic approaches to loglinear claim cost analysis, Astin Bulletin 11 77-90. MR0611038
  2. Ter Berg P., Deductibles and the inverse Gaussian distribution, Astin Bulletin 24 2 319-323. 
  3. Chhikara R.S., Folks J.L., Estimation of the inverse Gaussian distribution function, J. Amer. Statist. Assoc. 69 , 345 2500-254. Zbl0282.62026
  4. Chhikara R.S., Folks J.L., The Inverse Gaussian Distribution: Theory, Methodology and Applications, New York, Marcel Dekker. Zbl0701.62009
  5. Edgeman R., Scott R., Pavur R., A modified Kolmogorov-Smirnov test for the inverse Gaussian distribution with unknown parameters, Commun. Statist.- Simula. 17 1203-1212. 
  6. Essam K. Al Hussaini, Nagi S. Abd-El-Hakim, Bivariate inverse Gaussian, Annals of Institute of Statistics and Mathematics 33 , Part A 57-66. MR0613202
  7. Gunes H., Dietz D.C., Auclair P., Moore A., Modified goodness-of-fit tests for the inverse Gaussian distribution, Computational Statistics and Data Analysis 24 63-77. Zbl0900.62231
  8. Hadwiger H., Naturliche Ausscheidefunktionen fur Gesamtheiten und die Losung der Erneuerungsgleichung, Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker 40 31-39. MR0004465
  9. Henze N., Klar B., Goodness-of-Fit Tests for the inverse Gaussian distribution based on the empirical Laplace transform, Ann. Statist., forthcoming. Zbl1012.62047MR1910185
  10. Lehmann E.L., Testing Statistical Hypotheses, New York, Wiley. Zbl1076.62018MR0852406
  11. Mergel V., Test of goodness of fit for the inverse-gaussian distribution, Math. Commun. 4 191-195. Zbl0946.62007MR1746381
  12. Pavur R., Edgeman R., Scott R., Quadratic statistic for the goodness-of-fit test for the inverse Gaussian distribution, IEEE Trans. Reliab. 41 118-123. 
  13. O'Reilly F., Rueda R., Goodness-of-fit for the inverse Gaussian distribution, Canad. J. Statist. 20 387-397. Zbl0765.62051MR1208351
  14. Rao C.R., Linear Statistical Inference and Its Applications, New York, Wiley. Zbl0256.62002MR0221616
  15. Schrodinger E., Zur Theorie der Fall-und Steigversuche an Teilchen mit Brownscher Bewegung, Physikalische Zeitschrift 16 289-295. 
  16. Seshadri V., Inverse Gaussian Distributions, Oxford, Oxford University Press. Zbl0758.62027
  17. Seshadri V., The Inverse Gaussian Distribution - Statistical Theory and Applications, London, Springer. Zbl0942.62011MR1622488
  18. Shuster J., On the inverse Gaussian distribution, J. Amer. Statist. Assoc. 63 1514-1516. Zbl0169.21004MR0235653
  19. Tweedie M.C.K., Statistical properties of inverse Gaussian distributions I, II, Annals of Mathematical Statistics 28 362-377. Zbl0086.35202MR0110132
  20. Wald, A., Sequential Analysis, Wiley, New York. Zbl0091.14602MR0020764

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.