Equicontinuity of power maps in locally pseudo-convex algebras
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 1, page 91-98
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topEl Kinani, Abdellah. "Equicontinuity of power maps in locally pseudo-convex algebras." Commentationes Mathematicae Universitatis Carolinae 44.1 (2003): 91-98. <http://eudml.org/doc/249208>.
@article{ElKinani2003,
abstract = {We show that, in any unitary (commutative or not) Baire locally pseudo-convex algebra with a continuous product, the power maps are equicontinuous at zero if all entire functions operate. We obtain the same conclusion if every element is bounded. An immediate consequence is a result of A. Arosio on commutative and complete metrizable locally convex algebras.},
author = {El Kinani, Abdellah},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally pseudo-convex algebra; continuous product; $m$-$p$-convexity; Baire space; power maps; power maps; locally pseudoconvex algebra},
language = {eng},
number = {1},
pages = {91-98},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Equicontinuity of power maps in locally pseudo-convex algebras},
url = {http://eudml.org/doc/249208},
volume = {44},
year = {2003},
}
TY - JOUR
AU - El Kinani, Abdellah
TI - Equicontinuity of power maps in locally pseudo-convex algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 1
SP - 91
EP - 98
AB - We show that, in any unitary (commutative or not) Baire locally pseudo-convex algebra with a continuous product, the power maps are equicontinuous at zero if all entire functions operate. We obtain the same conclusion if every element is bounded. An immediate consequence is a result of A. Arosio on commutative and complete metrizable locally convex algebras.
LA - eng
KW - locally pseudo-convex algebra; continuous product; $m$-$p$-convexity; Baire space; power maps; power maps; locally pseudoconvex algebra
UR - http://eudml.org/doc/249208
ER -
References
top- Arosio A., Locally convex inductive limits of normed algebras, Rend. Sem. Mat. Padova 51 (1974), 333-359. (1974) MR0377515
- Arens R., The space and convex topological rings, Bull. Amer. Math. Soc. 52 (1946), 931-935. (1946) MR0017524
- Bochnak J., Siciak J., Polynomials and multilinear mappings in topological vector spaces, Studia Math. 39 (1971), 59-76. (1971) Zbl0214.37702MR0313810
- El Kinani A., Entire functions and equicontinuity of power maps in Baire algebras, Rev. Mat. Univ. Complut. Madrid 13 (2000), 2 337-340. (2000) Zbl0976.46032MR1822117
- El Kinani A., Oudadess M., Entire functions and -convex structure in commutative Baire algebras, Bull. Belg. Math. Soc. 4 (1997), 685-678. (1997) Zbl0913.46046MR1600249
- El Kinani A., Oudadess M., Entire functions in locally convex algebras, Arabian Journal for Science and Engineering, vol. 27, 1A (2002), 85-90. MR1878561
- Mallios A., Topological Algebras, Selected Topics, North-Holland, Amsterdam, 1986. Zbl0597.46046MR0857807
- Michael E.A., Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952). (1952) Zbl0047.35502MR0051444
- Mityagin B.S., Rolewicz S., Zelazko W., Entire functions in -algebras, Studia Math. 21 (1962), 291-306. (1962) MR0144222
- Müller V., On topologizable algebras, Studia Math. 99 (1991), 2 149-153. (1991) MR1120746
- Rolewicz S., Metric Linear Spaces, PWN, Warsawa, 1972. Zbl0573.46001MR0808176
- Turpin P., Une remarque sur les algèbres à inverse continu, C.R. Acad. Sci. Paris, t. 270, Série A (1970), 1686-1689. Zbl0195.13804MR0268674
- Waelbroeck L., Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971. Zbl0225.46001MR0467234
- Zelazko W., Selected Topics in Topological Algebras, Aarhus University Lecture Notes Ser. 31, 1971. Zbl0221.46041MR0448080
- Zelazko W., Concerning entire functions in -algebras, Studia Math. 110 (3) (1994), 283-290. (1994) MR1292849
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.