A note on equality of functional envelopes

Martin Kružík

Mathematica Bohemica (2003)

  • Volume: 128, Issue: 2, page 169-178
  • ISSN: 0862-7959

Abstract

top
We characterize generalized extreme points of compact convex sets. In particular, we show that if the polyconvex hull is convex in m × n , min ( m , n ) 2 , then it is constructed from polyconvex extreme points via sequential lamination. Further, we give theorems ensuring equality of the quasiconvex (polyconvex) and the rank-1 convex envelopes of a lower semicontinuous function without explicit convexity assumptions on the quasiconvex (polyconvex) envelope.

How to cite

top

Kružík, Martin. "A note on equality of functional envelopes." Mathematica Bohemica 128.2 (2003): 169-178. <http://eudml.org/doc/249235>.

@article{Kružík2003,
abstract = {We characterize generalized extreme points of compact convex sets. In particular, we show that if the polyconvex hull is convex in $\mathbb \{R\}^\{m\times n\}$, $\min (m,n)\le 2$, then it is constructed from polyconvex extreme points via sequential lamination. Further, we give theorems ensuring equality of the quasiconvex (polyconvex) and the rank-1 convex envelopes of a lower semicontinuous function without explicit convexity assumptions on the quasiconvex (polyconvex) envelope.},
author = {Kružík, Martin},
journal = {Mathematica Bohemica},
keywords = {extreme points; polyconvexity; quasiconvexity; rank-1 convexity; lower semicontinuous function; extreme points; polyconvexity; quasiconvexity; rank-1 convexity; lower semicontinuous function},
language = {eng},
number = {2},
pages = {169-178},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on equality of functional envelopes},
url = {http://eudml.org/doc/249235},
volume = {128},
year = {2003},
}

TY - JOUR
AU - Kružík, Martin
TI - A note on equality of functional envelopes
JO - Mathematica Bohemica
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 128
IS - 2
SP - 169
EP - 178
AB - We characterize generalized extreme points of compact convex sets. In particular, we show that if the polyconvex hull is convex in $\mathbb {R}^{m\times n}$, $\min (m,n)\le 2$, then it is constructed from polyconvex extreme points via sequential lamination. Further, we give theorems ensuring equality of the quasiconvex (polyconvex) and the rank-1 convex envelopes of a lower semicontinuous function without explicit convexity assumptions on the quasiconvex (polyconvex) envelope.
LA - eng
KW - extreme points; polyconvexity; quasiconvexity; rank-1 convexity; lower semicontinuous function; extreme points; polyconvexity; quasiconvexity; rank-1 convexity; lower semicontinuous function
UR - http://eudml.org/doc/249235
ER -

References

top
  1. Semicontinuity problems in the calculus of variations, Arch. Rat. Mech. Anal. 86 (1986), 125–145. (1986) MR0751305
  2. Compact Convex Sets and Boundary Integrals, Springer, Berlin, 1971. (1971) Zbl0209.42601MR0445271
  3. Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 63 (1977), 337–403. (1977) Zbl0368.73040MR0475169
  4. A version of the fundamental theorem for Young measures, PDEs and Continuum Models of Phase Transition, M. Rascle, D. Serre, M. Slemrod (eds.), Lecture Notes in Physics 344, Springer, Berlin, 1989, pp. 207–215. (1989) Zbl0991.49500MR1036070
  5. Restriction on microstructure, Proc. Roy. Soc. Edinburgh 124A (1994), 843–878. (1994) MR1303758
  6. Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. (1989) Zbl0703.49001MR0990890
  7. 10.1007/s002050000098, Arch. Rat. Mech. Anal. 154 (2000), 93–100. (2000) MR1784961DOI10.1007/s002050000098
  8. 10.1007/BF00375279, Arch. Rat. Mech. Anal. 115 (1991), 329–365. (1991) MR1120852DOI10.1007/BF00375279
  9. 10.1007/BF02921593, J. Geom. Anal. 4 (1994), 59–90. (1994) MR1274138DOI10.1007/BF02921593
  10. 10.1007/s005260000047, Calc. Var. Partial Differential Equations 11 (2000), 321–332. (2000) MR1797873DOI10.1007/s005260000047
  11. Quasiconvex extreme points of convex sets, (to appear). (to appear) MR1937535
  12. 10.1007/PL00009331, Discrete Comput. Geom. 19 (1998), 105–130. (1998) MR1486640DOI10.1007/PL00009331
  13. 10.2140/pjm.1952.2.25, Pacific J. Math. 2 (1952), 25–53. (1952) Zbl0046.10803MR0054865DOI10.2140/pjm.1952.2.25
  14. Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966. (1966) Zbl0142.38701
  15. Variational Models for Microstructure and Phase Transitions, Lecture Notes of the Max-Planck-Institute No. 2, Leipzig, 1998. (1998) MR1731640
  16. Laminates and microstructure, Europ. J. Appl. Math. 4 (1993), 121–149. (1993) Zbl0779.73050MR1228114
  17. Parametrized Measures and Variational Principles, Birhäuser, Basel, 1997. (1997) Zbl0879.49017MR1452107
  18. Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh 120 (1992), 185–189. (1992) MR1149994
  19. 10.1016/S0294-1449(99)80001-8, Ann. Inst. H. Poincaré, Ann. Non Linéaire 15 (1998), 663–686. (1998) Zbl0917.49014MR1650974DOI10.1016/S0294-1449(99)80001-8
  20. 10.1007/s005260050086, Calc. Var. Partial Differential Equations 6 (1998), 143–160. (1998) Zbl0896.49005MR1606473DOI10.1007/s005260050086
  21. 10.1007/s00030-002-8117-x, NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 37–44. (2002) Zbl1012.49012MR1891694DOI10.1007/s00030-002-8117-x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.