Languages under substitutions and balanced words
Alex Heinis[1]
- [1] Rode Kruislaan 1403 D 1111 XD Diemen, Pays-Bas
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 151-172
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. Berstel, M. Pocchiola, A geometric proof of the enumeration formula for Sturmian words. Internat. J. Algebra Comput. 3 (1993), 394–355. Zbl0802.68099MR1240390
- J. Cassaigne, Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. 4 (1997), 67–88. Zbl0921.68065MR1440670
- E.M. Coven, G.A. Hedlund, Sequences With Minimal Block Growth. Math. Systems Th. 7 (1971), 138–153. Zbl0256.54028MR322838
- N.J. Fine, H.S. Wilf, Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965), 109–114. Zbl0131.30203MR174934
- A. Heinis, Arithmetics and combinatorics of words of low complexity. Doctor’s Thesis Rijksuniversiteit Leiden (2001). Available on http://www.math.leidenuniv.nl/~tijdeman Zbl1136.68302
- M. Lothaire, Mots. Hermès Paris 1990. Zbl0862.05001MR1252659
- A. de Luca, F. Mignosi, Some combinatorial properties of Sturmian words. Theoret. Comp. Sci. 136 (1994), 361–385. Zbl0874.68245MR1311214
- F. Mignosi, On the number of factors of Sturmian words. Theoret. Comp. Sci. 82 (1991), 71–84. Zbl0728.68093MR1112109
- F. Mignosi, P. Séébold, Morphismes sturmiens et règles de Rauzy. J. Th. Nombres Bordeaux 5 (1993), 211–233. Zbl0797.11029MR1265903
- M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940), 1–42. Zbl0022.34003MR745
- R. Tijdeman, Intertwinings of periodic sequences. Indag. Math. 9 (1998), 113–122. Zbl0918.11012MR1618219