Languages under substitutions and balanced words
Alex Heinis[1]
- [1] Rode Kruislaan 1403 D 1111 XD Diemen, Pays-Bas
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 151-172
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHeinis, Alex. "Languages under substitutions and balanced words." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 151-172. <http://eudml.org/doc/249243>.
@article{Heinis2004,
abstract = {This paper consists of three parts. In the first part we prove a general theorem on the image of a language $K$ under a substitution, in the second we apply this to the special case when $K$ is the language of balanced words and in the third part we deal with recurrent Z-words of minimal block growth.},
affiliation = {Rode Kruislaan 1403 D 1111 XD Diemen, Pays-Bas},
author = {Heinis, Alex},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {substitutions; subword complexity; balanced word},
language = {eng},
number = {1},
pages = {151-172},
publisher = {Université Bordeaux 1},
title = {Languages under substitutions and balanced words},
url = {http://eudml.org/doc/249243},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Heinis, Alex
TI - Languages under substitutions and balanced words
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 151
EP - 172
AB - This paper consists of three parts. In the first part we prove a general theorem on the image of a language $K$ under a substitution, in the second we apply this to the special case when $K$ is the language of balanced words and in the third part we deal with recurrent Z-words of minimal block growth.
LA - eng
KW - substitutions; subword complexity; balanced word
UR - http://eudml.org/doc/249243
ER -
References
top- J. Berstel, M. Pocchiola, A geometric proof of the enumeration formula for Sturmian words. Internat. J. Algebra Comput. 3 (1993), 394–355. Zbl0802.68099MR1240390
- J. Cassaigne, Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. 4 (1997), 67–88. Zbl0921.68065MR1440670
- E.M. Coven, G.A. Hedlund, Sequences With Minimal Block Growth. Math. Systems Th. 7 (1971), 138–153. Zbl0256.54028MR322838
- N.J. Fine, H.S. Wilf, Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965), 109–114. Zbl0131.30203MR174934
- A. Heinis, Arithmetics and combinatorics of words of low complexity. Doctor’s Thesis Rijksuniversiteit Leiden (2001). Available on http://www.math.leidenuniv.nl/~tijdeman Zbl1136.68302
- M. Lothaire, Mots. Hermès Paris 1990. Zbl0862.05001MR1252659
- A. de Luca, F. Mignosi, Some combinatorial properties of Sturmian words. Theoret. Comp. Sci. 136 (1994), 361–385. Zbl0874.68245MR1311214
- F. Mignosi, On the number of factors of Sturmian words. Theoret. Comp. Sci. 82 (1991), 71–84. Zbl0728.68093MR1112109
- F. Mignosi, P. Séébold, Morphismes sturmiens et règles de Rauzy. J. Th. Nombres Bordeaux 5 (1993), 211–233. Zbl0797.11029MR1265903
- M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940), 1–42. Zbl0022.34003MR745
- R. Tijdeman, Intertwinings of periodic sequences. Indag. Math. 9 (1998), 113–122. Zbl0918.11012MR1618219
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.