Relations between jacobians of modular curves of level p 2

Imin Chen[1]; Bart De Smit[2]; Martin Grabitz[3]

  • [1] Department of Mathematics Simon Fraser University Burnaby, B.C., Canada, V5A 1S6
  • [2] Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden, Netherlands
  • [3] Mathematisches Institut der Humboldt Universitaet Rudower Chaussee 25 (Ecke Magnusstrasse) 12489 Berlin House 1, Germany

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 1, page 95-106
  • ISSN: 1246-7405

Abstract

top
We derive a relation between induced representations on the group GL 2 ( / p 2 ) which implies a relation between the jacobians of certain modular curves of level p 2 . The motivation for the construction of this relation is the determination of the applicability of Mazur’s method to the modular curve associated to the normalizer of a non-split Cartan subgroup of GL 2 ( / p 2 ) .

How to cite

top

Chen, Imin, De Smit, Bart, and Grabitz, Martin. "Relations between jacobians of modular curves of level $p^2$." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 95-106. <http://eudml.org/doc/249245>.

@article{Chen2004,
abstract = {We derive a relation between induced representations on the group $\operatorname\{GL\}_2(\{\mathbb\{Z\}\}/p^2\{\mathbb\{Z\}\})$ which implies a relation between the jacobians of certain modular curves of level $p^2$. The motivation for the construction of this relation is the determination of the applicability of Mazur’s method to the modular curve associated to the normalizer of a non-split Cartan subgroup of $\operatorname\{GL\}_2(\{\mathbb\{Z\}\}/p^2\{\mathbb\{Z\}\})$.},
affiliation = {Department of Mathematics Simon Fraser University Burnaby, B.C., Canada, V5A 1S6; Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden, Netherlands; Mathematisches Institut der Humboldt Universitaet Rudower Chaussee 25 (Ecke Magnusstrasse) 12489 Berlin House 1, Germany},
author = {Chen, Imin, De Smit, Bart, Grabitz, Martin},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {95-106},
publisher = {Université Bordeaux 1},
title = {Relations between jacobians of modular curves of level $p^2$},
url = {http://eudml.org/doc/249245},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Chen, Imin
AU - De Smit, Bart
AU - Grabitz, Martin
TI - Relations between jacobians of modular curves of level $p^2$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 95
EP - 106
AB - We derive a relation between induced representations on the group $\operatorname{GL}_2({\mathbb{Z}}/p^2{\mathbb{Z}})$ which implies a relation between the jacobians of certain modular curves of level $p^2$. The motivation for the construction of this relation is the determination of the applicability of Mazur’s method to the modular curve associated to the normalizer of a non-split Cartan subgroup of $\operatorname{GL}_2({\mathbb{Z}}/p^2{\mathbb{Z}})$.
LA - eng
UR - http://eudml.org/doc/249245
ER -

References

top
  1. I. Chen, Jacobians of a certain class of modular curves of level p n . Provisionally accepted by the Comptes Rendus de l’Academie des Sciences - Mathematics, 30 January 2004. 
  2. B. de Smit and S. Edixhoven, Sur un résultat d’Imin Chen. Math. Res. Lett. 7 (2–3) (2000), 147–153. Zbl0968.14024MR1764312
  3. N. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves. Annals of Mathematics Studies 108. Princeton University Press, 1985. Zbl0576.14026MR772569
  4. B. Mazur, Rational isogenies of prime degree. Inventiones mathematicae 44 (1978), 129–162. Zbl0386.14009MR482230
  5. D. Mumford, Abelian varieties. Tata Institute of Fundamental Research Studies in Mathemaitcs 5. Oxford University Press, London, 1970. Zbl0223.14022MR282985
  6. J.P. Murre, On contravariant functors from the category of preschemes over a field into the category of abelian groups. Publ. Math. IHES 23 (1964), 5–43. Zbl0142.18402MR206011
  7. F. Oort, Sur le schéma de Picard. Bull. Soc. Math. Fr. 90 (1962), 1–14. Zbl0123.13901MR138627
  8. J.P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inventiones Mathematicae 15 (1972), 259–331. Zbl0235.14012MR387283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.