Relations between jacobians of modular curves of level
Imin Chen[1]; Bart De Smit[2]; Martin Grabitz[3]
- [1] Department of Mathematics Simon Fraser University Burnaby, B.C., Canada, V5A 1S6
- [2] Mathematisch Instituut Universiteit Leiden Postbus 9512 2300 RA Leiden, Netherlands
- [3] Mathematisches Institut der Humboldt Universitaet Rudower Chaussee 25 (Ecke Magnusstrasse) 12489 Berlin House 1, Germany
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 95-106
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- I. Chen, Jacobians of a certain class of modular curves of level . Provisionally accepted by the Comptes Rendus de l’Academie des Sciences - Mathematics, 30 January 2004.
- B. de Smit and S. Edixhoven, Sur un résultat d’Imin Chen. Math. Res. Lett. 7 (2–3) (2000), 147–153. Zbl0968.14024MR1764312
- N. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves. Annals of Mathematics Studies 108. Princeton University Press, 1985. Zbl0576.14026MR772569
- B. Mazur, Rational isogenies of prime degree. Inventiones mathematicae 44 (1978), 129–162. Zbl0386.14009MR482230
- D. Mumford, Abelian varieties. Tata Institute of Fundamental Research Studies in Mathemaitcs 5. Oxford University Press, London, 1970. Zbl0223.14022MR282985
- J.P. Murre, On contravariant functors from the category of preschemes over a field into the category of abelian groups. Publ. Math. IHES 23 (1964), 5–43. Zbl0142.18402MR206011
- F. Oort, Sur le schéma de Picard. Bull. Soc. Math. Fr. 90 (1962), 1–14. Zbl0123.13901MR138627
- J.P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inventiones Mathematicae 15 (1972), 259–331. Zbl0235.14012MR387283