Towards explicit description of ramification filtration in the 2-dimensional case

Victor Abrashkin[1]

  • [1] Math. Dept. of Durham University South Road Durham DH7 7QR, United Kingdom & Steklov Math. Institute Gubkina 8, 117966, Moscow, Russia

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 2, page 293-333
  • ISSN: 1246-7405

Abstract

top
The principal result of this paper is an explicit description of the structure of ramification subgroups of the Galois group of 2-dimensional local field modulo its subgroup of commutators of order 3 . This result plays a clue role in the author’s proof of an analogue of the Grothendieck Conjecture for higher dimensional local fields, cf. Proc. Steklov Math. Institute, vol.  241, 2003, pp.  2-34.

How to cite

top

Abrashkin, Victor. "Towards explicit description of ramification filtration in the 2-dimensional case." Journal de Théorie des Nombres de Bordeaux 16.2 (2004): 293-333. <http://eudml.org/doc/249248>.

@article{Abrashkin2004,
abstract = {The principal result of this paper is an explicit description of the structure of ramification subgroups of the Galois group of 2-dimensional local field modulo its subgroup of commutators of order $\ge 3$. This result plays a clue role in the author’s proof of an analogue of the Grothendieck Conjecture for higher dimensional local fields, cf. Proc. Steklov Math. Institute, vol.  241, 2003, pp.  2-34.},
affiliation = {Math. Dept. of Durham University South Road Durham DH7 7QR, United Kingdom & Steklov Math. Institute Gubkina 8, 117966, Moscow, Russia},
author = {Abrashkin, Victor},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {higher dimensional local fields; ramification filtration; upper ramification numbers; local fields},
language = {eng},
number = {2},
pages = {293-333},
publisher = {Université Bordeaux 1},
title = {Towards explicit description of ramification filtration in the 2-dimensional case},
url = {http://eudml.org/doc/249248},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Abrashkin, Victor
TI - Towards explicit description of ramification filtration in the 2-dimensional case
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 2
SP - 293
EP - 333
AB - The principal result of this paper is an explicit description of the structure of ramification subgroups of the Galois group of 2-dimensional local field modulo its subgroup of commutators of order $\ge 3$. This result plays a clue role in the author’s proof of an analogue of the Grothendieck Conjecture for higher dimensional local fields, cf. Proc. Steklov Math. Institute, vol.  241, 2003, pp.  2-34.
LA - eng
KW - higher dimensional local fields; ramification filtration; upper ramification numbers; local fields
UR - http://eudml.org/doc/249248
ER -

References

top
  1. V.A. Abrashkin Ramification filtration of the Galois group of a local field. II. Proceeding of Steklov Math. Inst. 208 (1995). Zbl0884.11047
  2. V.A.AbrashkinRamification filtration of the Galois group of a local field. III. Izvestiya RAN, ser. math. 62, no 5, 3–48. Zbl0918.11060MR1680900
  3. V.A. Abrashkin, On a local analogue of the Grothendieck Conjecture. Intern. Journal of Math. 11 no.1 (2000), 3–43. Zbl1073.12501MR1754618
  4. H. Epp, Eliminating wild ramification. Invent. Math. 19 (1973), 235–249. Zbl0254.13008MR321929
  5. K. Kato, A generalisation of local class field theory by using K -groups I. J. Fac. Sci. Univ. Tokyo Sec. IA 26 no.2 (1979), 303–376. Zbl0428.12013MR550688
  6. Sh. Mochizuki, A version of the Grothendieck conjecture for p -adic local fields. Int. J. Math. 8 no. 4 (1997), 499–506. Zbl0894.11046MR1460898
  7. A.N. Parshin, Local class field theory. Trudy Mat. Inst. Steklov 165 (1984) English transl. in Proc.Steklov Math. Inst. 165 (1985) 157–185. Zbl0579.12012MR752939
  8. J.-P. Serre, Corps locaux. Hermann, Paris, 1968. Zbl0137.02601MR354618
  9. I. Zhukov, On ramification theory in the imperfect residue field case. Preprint of Nottingham University 98-02 (1998). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.