Cohen-Lenstra sums over local rings

Christian Wittmann[1]

  • [1] Universität der Bundeswehr München Fakultät für Informatik Institut für Theoretische Informatik und Mathematik 85577 Neubiberg, Germany

Journal de Théorie des Nombres de Bordeaux (2004)

  • Volume: 16, Issue: 3, page 817-838
  • ISSN: 1246-7405

Abstract

top
We study series of the form M | Aut R ( M ) | - 1 | M | - u , where R is a commutative local ring, u is a non-negative integer, and the summation extends over all finite R -modules M , up to isomorphism. This problem is motivated by Cohen-Lenstra heuristics on class groups of number fields, where sums of this kind occur. If R has additional properties, we will relate the above sum to a limit of zeta functions of the free modules R n , where these zeta functions count R -submodules of finite index in R n . In particular we will show that this is the case for the group ring p [ C p k ] of a cyclic group of order p k over the p -adic integers. Thereby we are able to prove a conjecture from [5], stating that the above sum corresponding to R = p [ C p k ] and u = 0 converges. Moreover we consider refined sums, where M runs through all modules satisfying additional cohomological conditions.

How to cite

top

Wittmann, Christian. "Cohen-Lenstra sums over local rings." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 817-838. <http://eudml.org/doc/249250>.

@article{Wittmann2004,
abstract = {We study series of the form $\displaystyle \sum _M |\operatorname\{Aut\}_R(M)|^\{-1\} |M|^\{-u\}$, where $R$ is a commutative local ring, $u$ is a non-negative integer, and the summation extends over all finite $R$-modules $M$, up to isomorphism. This problem is motivated by Cohen-Lenstra heuristics on class groups of number fields, where sums of this kind occur. If $R$ has additional properties, we will relate the above sum to a limit of zeta functions of the free modules $R^n$, where these zeta functions count $R$-submodules of finite index in $R^n$. In particular we will show that this is the case for the group ring $\mathbb\{Z\}_p[C_\{p^k\}]$ of a cyclic group of order $p^k$ over the $p$-adic integers. Thereby we are able to prove a conjecture from [5], stating that the above sum corresponding to $R=\mathbb\{Z\}_p[C_\{p^k\}]$ and $u=0$ converges. Moreover we consider refined sums, where $M$ runs through all modules satisfying additional cohomological conditions.},
affiliation = {Universität der Bundeswehr München Fakultät für Informatik Institut für Theoretische Informatik und Mathematik 85577 Neubiberg, Germany},
author = {Wittmann, Christian},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {817-838},
publisher = {Université Bordeaux 1},
title = {Cohen-Lenstra sums over local rings},
url = {http://eudml.org/doc/249250},
volume = {16},
year = {2004},
}

TY - JOUR
AU - Wittmann, Christian
TI - Cohen-Lenstra sums over local rings
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 817
EP - 838
AB - We study series of the form $\displaystyle \sum _M |\operatorname{Aut}_R(M)|^{-1} |M|^{-u}$, where $R$ is a commutative local ring, $u$ is a non-negative integer, and the summation extends over all finite $R$-modules $M$, up to isomorphism. This problem is motivated by Cohen-Lenstra heuristics on class groups of number fields, where sums of this kind occur. If $R$ has additional properties, we will relate the above sum to a limit of zeta functions of the free modules $R^n$, where these zeta functions count $R$-submodules of finite index in $R^n$. In particular we will show that this is the case for the group ring $\mathbb{Z}_p[C_{p^k}]$ of a cyclic group of order $p^k$ over the $p$-adic integers. Thereby we are able to prove a conjecture from [5], stating that the above sum corresponding to $R=\mathbb{Z}_p[C_{p^k}]$ and $u=0$ converges. Moreover we consider refined sums, where $M$ runs through all modules satisfying additional cohomological conditions.
LA - eng
UR - http://eudml.org/doc/249250
ER -

References

top
  1. C.J. Bushnell, I. Reiner, Zeta functions of arithmetic orders and Solomon’s Conjectures. Math. Z. 173 (1980), 135–161. Zbl0438.12004MR583382
  2. H. Cohen, H.W. Lenstra, Heuristics on class groups of number fields. Number Theory Noordwijkerhout 1983, LNM 1068, Springer, 1984. Zbl0558.12002MR756082
  3. H. Cohen, J. Martinet, Étude heuristique des groupes de classes des corps de nombres. J. reine angew. Math. 404 (1990), 39–76. Zbl0699.12016MR1037430
  4. S.D. Fisher, M.N. Alexander, Matrices over a finite field. Am. Math. Monthly 73 (1966), 639–641. Zbl0138.01202MR1533848
  5. C. Greither, Galois-Cohen-Lenstra heuristics. Acta Math. et Inf. Univ. Ostraviensis 8 (2000), 33–43. Zbl1075.11070MR1800220
  6. P. Hall, A partition formula connected with Abelian groups. Comment. Math. Helv. 11 (1938/39), 126–129. Zbl0019.39705MR1509594
  7. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers. Oxford University Press, 1979. Zbl0020.29201MR568909
  8. B. Huppert, Endliche Gruppen I. Springer, 1967. Zbl0217.07201MR224703
  9. N. Jacobson, Basic Algebra II. Freeman, 1980. Zbl0441.16001MR571884
  10. I. Reiner, Zeta functions of integral representations. Comm. Algebra 8 (1980), 911-925. Zbl0444.12009MR573461
  11. G.-C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie 2 (1964), 340–368. Zbl0121.02406MR174487
  12. J.-P. Serre, Local Fields. Springer, 1995. Zbl0423.12016MR554237
  13. L. Solomon, Zeta functions and integral representation theory. Adv. Math. 26 (1977), 306–326. Zbl0374.20007MR460292
  14. C. Wittmann, Zeta functions of integral representations of cyclic p -groups. J. Algebra 274 (2004), 271–308. Zbl1052.20006MR2040875
  15. C. Wittmann, p -class groups of certain extensions of degree p . Math. Comp. 74 (2005), 937–947. Zbl1137.11346MR2114656

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.