Cohen-Lenstra sums over local rings
- [1] Universität der Bundeswehr München Fakultät für Informatik Institut für Theoretische Informatik und Mathematik 85577 Neubiberg, Germany
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 817-838
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topWittmann, Christian. "Cohen-Lenstra sums over local rings." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 817-838. <http://eudml.org/doc/249250>.
@article{Wittmann2004,
abstract = {We study series of the form $\displaystyle \sum _M |\operatorname\{Aut\}_R(M)|^\{-1\} |M|^\{-u\}$, where $R$ is a commutative local ring, $u$ is a non-negative integer, and the summation extends over all finite $R$-modules $M$, up to isomorphism. This problem is motivated by Cohen-Lenstra heuristics on class groups of number fields, where sums of this kind occur. If $R$ has additional properties, we will relate the above sum to a limit of zeta functions of the free modules $R^n$, where these zeta functions count $R$-submodules of finite index in $R^n$. In particular we will show that this is the case for the group ring $\mathbb\{Z\}_p[C_\{p^k\}]$ of a cyclic group of order $p^k$ over the $p$-adic integers. Thereby we are able to prove a conjecture from [5], stating that the above sum corresponding to $R=\mathbb\{Z\}_p[C_\{p^k\}]$ and $u=0$ converges. Moreover we consider refined sums, where $M$ runs through all modules satisfying additional cohomological conditions.},
affiliation = {Universität der Bundeswehr München Fakultät für Informatik Institut für Theoretische Informatik und Mathematik 85577 Neubiberg, Germany},
author = {Wittmann, Christian},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {817-838},
publisher = {Université Bordeaux 1},
title = {Cohen-Lenstra sums over local rings},
url = {http://eudml.org/doc/249250},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Wittmann, Christian
TI - Cohen-Lenstra sums over local rings
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 817
EP - 838
AB - We study series of the form $\displaystyle \sum _M |\operatorname{Aut}_R(M)|^{-1} |M|^{-u}$, where $R$ is a commutative local ring, $u$ is a non-negative integer, and the summation extends over all finite $R$-modules $M$, up to isomorphism. This problem is motivated by Cohen-Lenstra heuristics on class groups of number fields, where sums of this kind occur. If $R$ has additional properties, we will relate the above sum to a limit of zeta functions of the free modules $R^n$, where these zeta functions count $R$-submodules of finite index in $R^n$. In particular we will show that this is the case for the group ring $\mathbb{Z}_p[C_{p^k}]$ of a cyclic group of order $p^k$ over the $p$-adic integers. Thereby we are able to prove a conjecture from [5], stating that the above sum corresponding to $R=\mathbb{Z}_p[C_{p^k}]$ and $u=0$ converges. Moreover we consider refined sums, where $M$ runs through all modules satisfying additional cohomological conditions.
LA - eng
UR - http://eudml.org/doc/249250
ER -
References
top- C.J. Bushnell, I. Reiner, Zeta functions of arithmetic orders and Solomon’s Conjectures. Math. Z. 173 (1980), 135–161. Zbl0438.12004MR583382
- H. Cohen, H.W. Lenstra, Heuristics on class groups of number fields. Number Theory Noordwijkerhout 1983, LNM 1068, Springer, 1984. Zbl0558.12002MR756082
- H. Cohen, J. Martinet, Étude heuristique des groupes de classes des corps de nombres. J. reine angew. Math. 404 (1990), 39–76. Zbl0699.12016MR1037430
- S.D. Fisher, M.N. Alexander, Matrices over a finite field. Am. Math. Monthly 73 (1966), 639–641. Zbl0138.01202MR1533848
- C. Greither, Galois-Cohen-Lenstra heuristics. Acta Math. et Inf. Univ. Ostraviensis 8 (2000), 33–43. Zbl1075.11070MR1800220
- P. Hall, A partition formula connected with Abelian groups. Comment. Math. Helv. 11 (1938/39), 126–129. Zbl0019.39705MR1509594
- G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers. Oxford University Press, 1979. Zbl0020.29201MR568909
- B. Huppert, Endliche Gruppen I. Springer, 1967. Zbl0217.07201MR224703
- N. Jacobson, Basic Algebra II. Freeman, 1980. Zbl0441.16001MR571884
- I. Reiner, Zeta functions of integral representations. Comm. Algebra 8 (1980), 911-925. Zbl0444.12009MR573461
- G.-C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie 2 (1964), 340–368. Zbl0121.02406MR174487
- J.-P. Serre, Local Fields. Springer, 1995. Zbl0423.12016MR554237
- L. Solomon, Zeta functions and integral representation theory. Adv. Math. 26 (1977), 306–326. Zbl0374.20007MR460292
- C. Wittmann, Zeta functions of integral representations of cyclic -groups. J. Algebra 274 (2004), 271–308. Zbl1052.20006MR2040875
- C. Wittmann, -class groups of certain extensions of degree . Math. Comp. 74 (2005), 937–947. Zbl1137.11346MR2114656
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.