Extremal values of Dirichlet -functions in the half-plane of absolute convergence
- [1] Institut für Algebra und Geometrie Fachbereich Mathematik Johann Wolfgang Goethe-Universität Frankfurt Robert-Mayer-Str. 10 60 054 Frankfurt, Germany
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 1, page 221-232
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSteuding, Jörn. "Extremal values of Dirichlet $L$-functions in the half-plane of absolute convergence." Journal de Théorie des Nombres de Bordeaux 16.1 (2004): 221-232. <http://eudml.org/doc/249253>.
@article{Steuding2004,
abstract = {We prove that for any real $\theta $ there are infinitely many values of $s=\sigma +it$ with $\sigma \rightarrow 1+$ and $t\rightarrow +\infty $ such that\[ \Re \lbrace \exp (i\theta )\log L(s,\chi )\rbrace \ge \log \{\log \log \log t \over \log \log \log \log t\}+O(1).\]The proof relies on an effective version of Kronecker’s approximation theorem.},
affiliation = {Institut für Algebra und Geometrie Fachbereich Mathematik Johann Wolfgang Goethe-Universität Frankfurt Robert-Mayer-Str. 10 60 054 Frankfurt, Germany},
author = {Steuding, Jörn},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {221-232},
publisher = {Université Bordeaux 1},
title = {Extremal values of Dirichlet $L$-functions in the half-plane of absolute convergence},
url = {http://eudml.org/doc/249253},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Steuding, Jörn
TI - Extremal values of Dirichlet $L$-functions in the half-plane of absolute convergence
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 1
SP - 221
EP - 232
AB - We prove that for any real $\theta $ there are infinitely many values of $s=\sigma +it$ with $\sigma \rightarrow 1+$ and $t\rightarrow +\infty $ such that\[ \Re \lbrace \exp (i\theta )\log L(s,\chi )\rbrace \ge \log {\log \log \log t \over \log \log \log \log t}+O(1).\]The proof relies on an effective version of Kronecker’s approximation theorem.
LA - eng
UR - http://eudml.org/doc/249253
ER -
References
top- H. Bohr, E. Landau, Über das Verhalten von und in der Nähe der Geraden . Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. (1910), 303–330. Zbl41.0290.01
- H. Bohr, E. Landau, Nachtrag zu unseren Abhandlungen aus den Jahren 1910 und 1923. Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. (1924), 168–172. Zbl50.0233.01
- H. Davenport, H. Heilbronn, On the zeros of certain Dirichlet series I, II. J. London Math. Soc. 11 (1936), 181–185, 307–312. Zbl62.0138.01MR20578
- R. Garunkštis, On zeros of the Lerch zeta-function II. Probability Theory and Mathematical Statistics: Proceedings of the Seventh Vilnius Conf. (1998), B.Grigelionis et al. (Eds.), TEV/Vilnius, VSP/Utrecht, 1999, 267–276. Zbl0997.11070
- K. Ramachandra, On the frequency of Titchmarsh’s phenomenon for - VII. Ann. Acad. Sci. Fennicae 14 (1989), 27–40. Zbl0628.10041MR997968
- G.J. Rieger, Effective simultaneous approximation of complex numbers by conjugate algebraic integers. Acta Arith. 63 (1993), 325–334. Zbl0788.11024MR1218460
- E.C. Titchmarsh, The theory of functions. Oxford University Press, 1939 2nd ed. Zbl0022.14602MR197687
- E.C. Titchmarsh, The theory of the Riemann zeta-function. Oxford University Press, 1986 2nd ed. Zbl0601.10026MR882550
- M. Waldschmidt, A lower bound for linear forms in logarithms. Acta Arith. 37 (1980), 257-283. Zbl0357.10017MR598881
- H. Weyl, Über ein Problem aus dem Gebiete der diophantischen Approximation. Göttinger Nachrichten (1914), 234-244. Zbl45.0325.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.