Character sums in complex half-planes
Sergei V. Konyagin[1]; Vsevolod F. Lev[2]
- [1] Department of Mechanics and Mathematics Moscow State University Moscow, Russia
- [2] Department of Mathematics Haifa University at Oranim Tivon 36006, Israel
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 587-606
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKonyagin, Sergei V., and Lev, Vsevolod F.. "Character sums in complex half-planes." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 587-606. <http://eudml.org/doc/249259>.
@article{Konyagin2004,
abstract = {Let $A$ be a finite subset of an abelian group $G$ and let $P$ be a closed half-plane of the complex plane, containing zero. We show that (unless $A$ possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of $A$ which belongs to $P$. In other words, there exists a non-trivial character $\chi \in \{\widehat\{G\}\}$ such that $\sum _\{a\in A\} \chi (a)\in P$.},
affiliation = {Department of Mechanics and Mathematics Moscow State University Moscow, Russia; Department of Mathematics Haifa University at Oranim Tivon 36006, Israel},
author = {Konyagin, Sergei V., Lev, Vsevolod F.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {character group; Fourier coefficients; character sums},
language = {eng},
number = {3},
pages = {587-606},
publisher = {Université Bordeaux 1},
title = {Character sums in complex half-planes},
url = {http://eudml.org/doc/249259},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Konyagin, Sergei V.
AU - Lev, Vsevolod F.
TI - Character sums in complex half-planes
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 587
EP - 606
AB - Let $A$ be a finite subset of an abelian group $G$ and let $P$ be a closed half-plane of the complex plane, containing zero. We show that (unless $A$ possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of $A$ which belongs to $P$. In other words, there exists a non-trivial character $\chi \in {\widehat{G}}$ such that $\sum _{a\in A} \chi (a)\in P$.
LA - eng
KW - character group; Fourier coefficients; character sums
UR - http://eudml.org/doc/249259
ER -
References
top- J. Bourgain, Sur le minimum d’une somme de cosinus, [On the minimum of a sum of cosines]. Acta Arithmetica 45 (4) (1986), 381–389. Zbl0615.42001MR847298
- A.S. Belov, S.V. Konyagin, On the conjecture of Littlewood and minima of even trigonometric polynomials. Harmonic analysis from the Pichorides viewpoint (Anogia, 1995), 1–11, Publ. Math. Orsay, 96-01, Univ. Paris XI, Orsay, 1996. Zbl0862.42001MR1426370
- S.V. Konyagin, On the Littlewood problem Izv. Akad. Nauk SSSR Ser. Mat. 45 (2) (1981), 243–265. (English translation: Mathematics of the USSR - Izvestiya 45 (2) (1982), 205–225.) Zbl0493.42004MR616222
- S.V. Konyagin, V. Lev, On the distribution of exponential sums. Integers 0 (2000), #A1 (electronic). Zbl0968.11031MR1759419
- O.C. McGehee, L. Pigno, B. Smith, Hardy’s inequality and the Littlewood conjecture. Bull. Amer. Math. Soc. (N.S.) 5 (1) (1981), 71–72. Zbl0485.42001MR614316
- O.C. McGehee, L. Pigno, B. Smith, Hardy’s inequality and the norm of exponential sums. Annals of Mathematics (2) 113 (3) (1981), 613–618. Zbl0473.42001MR621019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.