Algebraic independence over
Peter Bundschuh[1]; Kumiko Nishioka[2]
- [1] Mathematisches Institut Universität zu Köln Weyertal 86-90 50931 Köln, Germany
- [2] Mathematics, Hiyoshi Campus Keio University 4-1-1 Hiyoshi, Kohoku-ku Yokohama 223-8521, Japan
Journal de Théorie des Nombres de Bordeaux (2004)
- Volume: 16, Issue: 3, page 519-533
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBundschuh, Peter, and Nishioka, Kumiko. "Algebraic independence over $\mathbb{Q}_p$." Journal de Théorie des Nombres de Bordeaux 16.3 (2004): 519-533. <http://eudml.org/doc/249266>.
@article{Bundschuh2004,
abstract = {Let $f(x)$ be a power series $\sum _\{n\ge 1\}\zeta (n)x^\{e(n)\}$, where $(e(n))$ is a strictly increasing linear recurrence sequence of non-negative integers, and $(\zeta (n))$ a sequence of roots of unity in $\overline\{\mathbb\{Q\}\}_p$ satisfying an appropriate technical condition. Then we are mainly interested in characterizing the algebraic independence over $\mathbb\{Q\}_p$ of the elements $f(\alpha _1),\ldots ,$$f(\alpha _t)$ from $\mathbb\{C\}_p$ in terms of the distinct $\alpha _1,\ldots ,\alpha _t\in \mathbb\{Q\}_p$ satisfying $0 < |\alpha _\tau |_p < 1$ for $\tau = 1,\ldots ,t$. A striking application of our basic result says that, in the case $e(n) = n$, the set $\lbrace f(\alpha )|\, \alpha \in \mathbb\{Q\}_p, \, 0 <|\alpha |_p < 1\rbrace $ is algebraically independent over $\mathbb\{Q\}_p$ if $(\zeta (n))$ satisfies the “technical condition”. We close with a conjecture concerning more general sequences $(e(n))$.},
affiliation = {Mathematisches Institut Universität zu Köln Weyertal 86-90 50931 Köln, Germany; Mathematics, Hiyoshi Campus Keio University 4-1-1 Hiyoshi, Kohoku-ku Yokohama 223-8521, Japan},
author = {Bundschuh, Peter, Nishioka, Kumiko},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {519-533},
publisher = {Université Bordeaux 1},
title = {Algebraic independence over $\mathbb\{Q\}_p$},
url = {http://eudml.org/doc/249266},
volume = {16},
year = {2004},
}
TY - JOUR
AU - Bundschuh, Peter
AU - Nishioka, Kumiko
TI - Algebraic independence over $\mathbb{Q}_p$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2004
PB - Université Bordeaux 1
VL - 16
IS - 3
SP - 519
EP - 533
AB - Let $f(x)$ be a power series $\sum _{n\ge 1}\zeta (n)x^{e(n)}$, where $(e(n))$ is a strictly increasing linear recurrence sequence of non-negative integers, and $(\zeta (n))$ a sequence of roots of unity in $\overline{\mathbb{Q}}_p$ satisfying an appropriate technical condition. Then we are mainly interested in characterizing the algebraic independence over $\mathbb{Q}_p$ of the elements $f(\alpha _1),\ldots ,$$f(\alpha _t)$ from $\mathbb{C}_p$ in terms of the distinct $\alpha _1,\ldots ,\alpha _t\in \mathbb{Q}_p$ satisfying $0 < |\alpha _\tau |_p < 1$ for $\tau = 1,\ldots ,t$. A striking application of our basic result says that, in the case $e(n) = n$, the set $\lbrace f(\alpha )|\, \alpha \in \mathbb{Q}_p, \, 0 <|\alpha |_p < 1\rbrace $ is algebraically independent over $\mathbb{Q}_p$ if $(\zeta (n))$ satisfies the “technical condition”. We close with a conjecture concerning more general sequences $(e(n))$.
LA - eng
UR - http://eudml.org/doc/249266
ER -
References
top- Y. Amice, Les nombres -adiques. Presses Universitaires de France, Paris, 1975. Zbl0313.12104MR447195
- P. Bundschuh, V.G. Chirskii, Algebraic independence of elements from over , I. Arch. Math. 79 (2002), 345–352. Zbl1027.11050MR1951303
- P. Bundschuh, V.G. Chirskii, Algebraic independence of elements from over , II Acta Arith. 113 (2004), 309–326. Zbl1083.11046MR2079407
- F.Q. Gouvêa, -adic Numbers. Springer-Verlag, Berlin et al., 1993. Zbl0786.11001MR1251959
- G. Hansel, Une démonstration simple du théorème de Skolem-Mahler-Lech. Theoret. Comput. Sci. 43 (1986), 91–98. Zbl0605.10007MR847905
- N. Koblitz, -adic Numbers, -adic Analysis, and Zeta-Functions, 2nd ed. Springer-Verlag, New York, 1984. Zbl0364.12015MR754003
- K.K. Kubota, On the algebraic independence of holomorphic solutions of certain functional equations and their values. Math. Ann. 227 (1977), 9–50. Zbl0359.10030MR498423
- D. Lampert, Algebraic -adic Expansions. J. Number Theory 23 (1986), 279–284. Zbl0586.12021MR846958
- K. Nishioka, -adic transcendental numbers. Proc. Amer. Math. Soc. 108 (1990), 39–41. Zbl0687.10027MR994783
- K. Nishioka, Mahler Functions and Transcendence. LNM 1631, Springer-Verlag, Berlin et al., 1996. Zbl0876.11034MR1439966
- A.B. Shidlovskii, Transcendental Numbers. De Gruyter, Berlin et al., 1989. Zbl0689.10043MR1033015
- T.N. Shorey, R. Tijdeman, Exponential Diophantine Equations. Cambridge Univ. Press, 1986. Zbl0606.10011MR891406
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.