Almost Q -rings

C. Jayaram

Archivum Mathematicum (2004)

  • Volume: 040, Issue: 3, page 249-257
  • ISSN: 0044-8753

Abstract

top
In this paper we establish some new characterizations for Q -rings and Noetherian Q -rings.

How to cite

top

Jayaram, C.. "Almost $Q$-rings." Archivum Mathematicum 040.3 (2004): 249-257. <http://eudml.org/doc/249282>.

@article{Jayaram2004,
abstract = {In this paper we establish some new characterizations for $Q$-rings and Noetherian $Q$-rings.},
author = {Jayaram, C.},
journal = {Archivum Mathematicum},
keywords = {$Q$-ring; almost $Q$-ring; Noetherian $Q$-ring},
language = {eng},
number = {3},
pages = {249-257},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Almost $Q$-rings},
url = {http://eudml.org/doc/249282},
volume = {040},
year = {2004},
}

TY - JOUR
AU - Jayaram, C.
TI - Almost $Q$-rings
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 3
SP - 249
EP - 257
AB - In this paper we establish some new characterizations for $Q$-rings and Noetherian $Q$-rings.
LA - eng
KW - $Q$-ring; almost $Q$-ring; Noetherian $Q$-ring
UR - http://eudml.org/doc/249282
ER -

References

top
  1. Anderson D. D., Multiplication ideals, Multiplication rings and the ring R ( X ) , Canad. J. Math. XXVIII (1976), 760–768. (1976) Zbl0343.13009MR0424794
  2. Anderson D. D., Some remarks on multiplication ideals, Math. Japon. 25 (1980), 463–469. (1980) Zbl0446.13001MR0594548
  3. Anderson D. D., Noetherian rings in which every ideal is a product of primary ideals, Canad. Math. Bull. 23 (4), (1980), 457–459. (1980) Zbl0445.13006MR0602601
  4. Anderson D. D., Mahaney L. A., Commutative rings in which every ideal is a product of primary ideals, J. Algebra 106 (1987), 528–535. (1987) Zbl0607.13004MR0880975
  5. Anderson D. D., Mahaney L. A., On primary factorizations, J. Pure Appl. Algebra 54 (1988), 141–154. (1988) Zbl0665.13004MR0963540
  6. Becerra L., Johnson J. A., A note on quasi-principal ideals, Tamkang J. Math. (1982), 77–82. (1982) MR0835192
  7. Heinzer W., Ohm J., Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971), 273–284. (1971) Zbl0223.13017MR0280472
  8. Heinzer W., Lantz D., The Laskerian property in commutative rings, J. Algebra 72 (1981), 101–114. (1981) Zbl0498.13001MR0634618
  9. Larsen M. D., McCarthy P. J., Multiplicative theory of ideals, Academic Press, New York 1971. (1971) Zbl0237.13002MR0414528
  10. Levitz K. B., A characterization of general ZPI-rings, Proc. Amer. Math. Soc. 32 (1972), 376–380. (1972) MR0294312
  11. McCarthy P. J., Principal elements of lattices of ideals, Proc. Amer. Math. Soc. 30 (1971), 43–45. (1971) Zbl0218.13001MR0279080
  12. Ohm J., Pendleton R. L., Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631–639. (1968) Zbl0172.32202MR0229627

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.