Almost -rings
Archivum Mathematicum (2004)
- Volume: 040, Issue: 3, page 249-257
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topJayaram, C.. "Almost $Q$-rings." Archivum Mathematicum 040.3 (2004): 249-257. <http://eudml.org/doc/249282>.
@article{Jayaram2004,
abstract = {In this paper we establish some new characterizations for $Q$-rings and Noetherian $Q$-rings.},
author = {Jayaram, C.},
journal = {Archivum Mathematicum},
keywords = {$Q$-ring; almost $Q$-ring; Noetherian $Q$-ring},
language = {eng},
number = {3},
pages = {249-257},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Almost $Q$-rings},
url = {http://eudml.org/doc/249282},
volume = {040},
year = {2004},
}
TY - JOUR
AU - Jayaram, C.
TI - Almost $Q$-rings
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 3
SP - 249
EP - 257
AB - In this paper we establish some new characterizations for $Q$-rings and Noetherian $Q$-rings.
LA - eng
KW - $Q$-ring; almost $Q$-ring; Noetherian $Q$-ring
UR - http://eudml.org/doc/249282
ER -
References
top- Anderson D. D., Multiplication ideals, Multiplication rings and the ring , Canad. J. Math. XXVIII (1976), 760–768. (1976) Zbl0343.13009MR0424794
- Anderson D. D., Some remarks on multiplication ideals, Math. Japon. 25 (1980), 463–469. (1980) Zbl0446.13001MR0594548
- Anderson D. D., Noetherian rings in which every ideal is a product of primary ideals, Canad. Math. Bull. 23 (4), (1980), 457–459. (1980) Zbl0445.13006MR0602601
- Anderson D. D., Mahaney L. A., Commutative rings in which every ideal is a product of primary ideals, J. Algebra 106 (1987), 528–535. (1987) Zbl0607.13004MR0880975
- Anderson D. D., Mahaney L. A., On primary factorizations, J. Pure Appl. Algebra 54 (1988), 141–154. (1988) Zbl0665.13004MR0963540
- Becerra L., Johnson J. A., A note on quasi-principal ideals, Tamkang J. Math. (1982), 77–82. (1982) MR0835192
- Heinzer W., Ohm J., Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971), 273–284. (1971) Zbl0223.13017MR0280472
- Heinzer W., Lantz D., The Laskerian property in commutative rings, J. Algebra 72 (1981), 101–114. (1981) Zbl0498.13001MR0634618
- Larsen M. D., McCarthy P. J., Multiplicative theory of ideals, Academic Press, New York 1971. (1971) Zbl0237.13002MR0414528
- Levitz K. B., A characterization of general ZPI-rings, Proc. Amer. Math. Soc. 32 (1972), 376–380. (1972) MR0294312
- McCarthy P. J., Principal elements of lattices of ideals, Proc. Amer. Math. Soc. 30 (1971), 43–45. (1971) Zbl0218.13001MR0279080
- Ohm J., Pendleton R. L., Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631–639. (1968) Zbl0172.32202MR0229627
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.