Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension -Laplacian
Daqing Jiang; Li Li Zhang; Donal O'Regan; Ravi P. Agarwal
Archivum Mathematicum (2004)
- Volume: 040, Issue: 4, page 367-381
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topJiang, Daqing, et al. "Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian." Archivum Mathematicum 040.4 (2004): 367-381. <http://eudml.org/doc/249291>.
@article{Jiang2004,
abstract = {In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin\{array\}\{l\} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end\{array\} \right. \]
where $\phi (s) = |s|^\{p-2\}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$.},
author = {Jiang, Daqing, Zhang, Li Li, O'Regan, Donal, Agarwal, Ravi P.},
journal = {Archivum Mathematicum},
keywords = {multiple solutions; singular; existence; discrete boundary value problem; discrete Dirichlet boundary value problem; one-dimensional -Laplacian; positive solution; Leray-Schauder alternative; cone fixed point theorem},
language = {eng},
number = {4},
pages = {367-381},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian},
url = {http://eudml.org/doc/249291},
volume = {040},
year = {2004},
}
TY - JOUR
AU - Jiang, Daqing
AU - Zhang, Li Li
AU - O'Regan, Donal
AU - Agarwal, Ravi P.
TI - Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 4
SP - 367
EP - 381
AB - In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin{array}{l} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end{array} \right. \]
where $\phi (s) = |s|^{p-2}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$.
LA - eng
KW - multiple solutions; singular; existence; discrete boundary value problem; discrete Dirichlet boundary value problem; one-dimensional -Laplacian; positive solution; Leray-Schauder alternative; cone fixed point theorem
UR - http://eudml.org/doc/249291
ER -
References
top- Agarwal R. P., O’Regan D., Singular discrete boundary value problems, Appl. Math. Lett. 12 (1999), 127–131. (1999) Zbl0944.39003MR1750610
- Agarwal R. P., O’Regan D., Boundary value problems for discrete equations, Appl. Math. Lett. 10 (1997), 83–89. (1997) Zbl0890.39001MR1458158
- Agarwal R. P., O’Regan D., Singular discrete boundary value problems, Appl. Math. Lett. 12 (1999), 113–119. (1999) Zbl0970.39006MR1751342
- Agarwal R. P., O’Regan D., Nonpositive discrete boundary value problems, Nonlinear Anal. 39 (2000), 207–215. MR1722094
- Agarwal R. P., O’Regan D., Existence theorem for single and multiple solutions to singular positone boundary value problems, J. Differential Equations, 175 (2001), 393–414. MR1855974
- Agarwal R. P., O’Regan D., Twin solutions to singular Dirichlet problems, J. Math. Anal. Appl. 240 (1999), 433–445. (1999) MR1731655
- Agarwal R. P., O’Regan D., Twin solutions to singular boundary value problems, Proc. Amer. Math. Soc. 128 (7) ( 2000), 2085–2094. Zbl0946.34020MR1664297
- Agarwal R. P., O’Regan D., Multiplicity results for singular conjugate, focal, and problems, J. Differential Equations 170 (2001), 142–156. Zbl0978.34018MR1813103
- Deimling K., Nonlinear functional analysis, Springer Verlag, 1985. (1985) Zbl0559.47040MR0787404
- Henderson J., Singular boundary value problems for difference equations, Dynam. Systems Appl. (1992), 271–282. (1992) Zbl0761.39002MR1182649
- Henderson J., Singular boundary value problems for higher order difference equations, In Proceedings of the First World Congress on Nonlinear Analysis, (Edited by V. Lakshmikantham), Walter de Gruyter, 1994, 1139–1150. (1994) MR1389147
- Jiang D. Q., Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs, Comput. Math. Appl. 40 (2000), 249–259. Zbl0976.34019MR1763623
- Jiang D. Q., Pang P. Y. H., Agarwal R. P., Upper and lower solutions method and a superlinear singular discrete boundary value problem, Dynam. Systems Appl., to appear. MR2370156
- O’Regan D., Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic, Dordrecht, 1997. (1997) Zbl1077.34505MR1449397
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.