Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension p -Laplacian

Daqing Jiang; Li Li Zhang; Donal O'Regan; Ravi P. Agarwal

Archivum Mathematicum (2004)

  • Volume: 040, Issue: 4, page 367-381
  • ISSN: 0044-8753

Abstract

top
In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem Δ [ φ ( Δ u ( t - 1 ) ) ] + q ( t ) f ( t , u ( t ) ) = 0 , t { 1 , 2 , , T } u ( 0 ) = u ( T + 1 ) = 0 , where φ ( s ) = | s | p - 2 s , p > 1 and our nonlinear term f ( t , u ) may be singular at u = 0 .

How to cite

top

Jiang, Daqing, et al. "Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian." Archivum Mathematicum 040.4 (2004): 367-381. <http://eudml.org/doc/249291>.

@article{Jiang2004,
abstract = {In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin\{array\}\{l\} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end\{array\} \right. \] where $\phi (s) = |s|^\{p-2\}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$.},
author = {Jiang, Daqing, Zhang, Li Li, O'Regan, Donal, Agarwal, Ravi P.},
journal = {Archivum Mathematicum},
keywords = {multiple solutions; singular; existence; discrete boundary value problem; discrete Dirichlet boundary value problem; one-dimensional -Laplacian; positive solution; Leray-Schauder alternative; cone fixed point theorem},
language = {eng},
number = {4},
pages = {367-381},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian},
url = {http://eudml.org/doc/249291},
volume = {040},
year = {2004},
}

TY - JOUR
AU - Jiang, Daqing
AU - Zhang, Li Li
AU - O'Regan, Donal
AU - Agarwal, Ravi P.
TI - Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian
JO - Archivum Mathematicum
PY - 2004
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 040
IS - 4
SP - 367
EP - 381
AB - In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin{array}{l} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end{array} \right. \] where $\phi (s) = |s|^{p-2}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$.
LA - eng
KW - multiple solutions; singular; existence; discrete boundary value problem; discrete Dirichlet boundary value problem; one-dimensional -Laplacian; positive solution; Leray-Schauder alternative; cone fixed point theorem
UR - http://eudml.org/doc/249291
ER -

References

top
  1. Agarwal R. P., O’Regan D., Singular discrete boundary value problems, Appl. Math. Lett. 12 (1999), 127–131. (1999) Zbl0944.39003MR1750610
  2. Agarwal R. P., O’Regan D., Boundary value problems for discrete equations, Appl. Math. Lett. 10 (1997), 83–89. (1997) Zbl0890.39001MR1458158
  3. Agarwal R. P., O’Regan D., Singular discrete ( n , p ) boundary value problems, Appl. Math. Lett. 12 (1999), 113–119. (1999) Zbl0970.39006MR1751342
  4. Agarwal R. P., O’Regan D., Nonpositive discrete boundary value problems, Nonlinear Anal. 39 (2000), 207–215. MR1722094
  5. Agarwal R. P., O’Regan D., Existence theorem for single and multiple solutions to singular positone boundary value problems, J. Differential Equations, 175 (2001), 393–414. MR1855974
  6. Agarwal R. P., O’Regan D., Twin solutions to singular Dirichlet problems, J. Math. Anal. Appl. 240 (1999), 433–445. (1999) MR1731655
  7. Agarwal R. P., O’Regan D., Twin solutions to singular boundary value problems, Proc. Amer. Math. Soc. 128 (7) ( 2000), 2085–2094. Zbl0946.34020MR1664297
  8. Agarwal R. P., O’Regan D., Multiplicity results for singular conjugate, focal, and ( N , P ) problems, J. Differential Equations 170 (2001), 142–156. Zbl0978.34018MR1813103
  9. Deimling K., Nonlinear functional analysis, Springer Verlag, 1985. (1985) Zbl0559.47040MR0787404
  10. Henderson J., Singular boundary value problems for difference equations, Dynam. Systems Appl. (1992), 271–282. (1992) Zbl0761.39002MR1182649
  11. Henderson J., Singular boundary value problems for higher order difference equations, In Proceedings of the First World Congress on Nonlinear Analysis, (Edited by V. Lakshmikantham), Walter de Gruyter, 1994, 1139–1150. (1994) MR1389147
  12. Jiang D. Q., Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs, Comput. Math. Appl. 40 (2000), 249–259. Zbl0976.34019MR1763623
  13. Jiang D. Q., Pang P. Y. H., Agarwal R. P., Upper and lower solutions method and a superlinear singular discrete boundary value problem, Dynam. Systems Appl., to appear. MR2370156
  14. O’Regan D., Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic, Dordrecht, 1997. (1997) Zbl1077.34505MR1449397

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.