Orientations and -colourings of graphs
Vincent Chouinard-Prévost; Alexandre Côté; Claude Tardif
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 3, page 549-553
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChouinard-Prévost, Vincent, Côté, Alexandre, and Tardif, Claude. "Orientations and $3$-colourings of graphs." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 549-553. <http://eudml.org/doc/249327>.
@article{Chouinard2004,
abstract = {We provide the list of all paths with at most $16$ arcs with the property that if a graph $G$ admits an orientation $\vec\{G\}$ such that one of the paths in our list admits no homomorphism to $\vec\{G\}$, then $G$ is $3$-colourable.},
author = {Chouinard-Prévost, Vincent, Côté, Alexandre, Tardif, Claude},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {graph colourings; paths; Hasse-Gallai-Roy Theorem; graph colouring; Hasse-Gallai-Roy theorem},
language = {eng},
number = {3},
pages = {549-553},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Orientations and $3$-colourings of graphs},
url = {http://eudml.org/doc/249327},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Chouinard-Prévost, Vincent
AU - Côté, Alexandre
AU - Tardif, Claude
TI - Orientations and $3$-colourings of graphs
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 549
EP - 553
AB - We provide the list of all paths with at most $16$ arcs with the property that if a graph $G$ admits an orientation $\vec{G}$ such that one of the paths in our list admits no homomorphism to $\vec{G}$, then $G$ is $3$-colourable.
LA - eng
KW - graph colourings; paths; Hasse-Gallai-Roy Theorem; graph colouring; Hasse-Gallai-Roy theorem
UR - http://eudml.org/doc/249327
ER -
References
top- Gallai T., On directed paths and circuits, Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, pp.115-118. Zbl0159.54403MR0233733
- Hasse M., Zur algebraischen Begründung der Graphentheorie. I., Math. Nachr. 28 (1964/1965), 275-290. (1964/1965) MR0179105
- Nešetřil J., C. Tardif C., Duality Theorems for Finite Structures (Characterizing Gaps and Good Characterizations), J. Combin. Theory Ser B 80 (2000), 80-97. (2000) MR1778201
- Nešetřil J., C. Tardif C., A dualistic approach to bounding the chromatic number of a graph, preprint, 2001, 9 pages ms. MR2368632
- Roy B., Nombre chromatique et plus longs chemins d'un graphe, Rev. Francaise Informat. Recherche Opérationelle 1 (1967), 129-132. (1967) Zbl0157.31302MR0225683
- Švejdarová I., Colouring of graphs and dual objects (in Czech), Thesis, Charles University, 2003.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.