Axioms for trimedial quasigroups
Michael K. Kinyon; Jon D. Phillips
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 2, page 287-294
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKinyon, Michael K., and Phillips, Jon D.. "Axioms for trimedial quasigroups." Commentationes Mathematicae Universitatis Carolinae 45.2 (2004): 287-294. <http://eudml.org/doc/249335>.
@article{Kinyon2004,
abstract = {We give new equations that axiomatize the variety of trimedial quasigroups. We also improve a standard characterization by showing that right semimedial, left F-quasigroups are trimedial.},
author = {Kinyon, Michael K., Phillips, Jon D.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {trimedial quasigroup; F-quasigroup; semimedial quasigroup; trimedial quasigroups; F-quasigroups; semimedial quasigroups; axioms; varieties of quasigroups},
language = {eng},
number = {2},
pages = {287-294},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Axioms for trimedial quasigroups},
url = {http://eudml.org/doc/249335},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Kinyon, Michael K.
AU - Phillips, Jon D.
TI - Axioms for trimedial quasigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 2
SP - 287
EP - 294
AB - We give new equations that axiomatize the variety of trimedial quasigroups. We also improve a standard characterization by showing that right semimedial, left F-quasigroups are trimedial.
LA - eng
KW - trimedial quasigroup; F-quasigroup; semimedial quasigroup; trimedial quasigroups; F-quasigroups; semimedial quasigroups; axioms; varieties of quasigroups
UR - http://eudml.org/doc/249335
ER -
References
top- Belousov V.D., Foundations of the Theory of Quasigroups and Loops, Izdat. Nauka, Moscow, 1967 (Russian); MR 36{#}1569, Zbl 163:01801. MR0218483
- Belousov V.D., About one quasigroup class (Russian), Uchenye zapiski Beltskogo gospedinstituta im. A. Russo 5 (1960), 29-44. (1960)
- Belousov V.D., Elements of Quasigroup Theory: A Special Course (in Russian), Kishinev State University Press, Kishinev, 1981.
- Bruck R.H., Some results in the theory of quasigroups, Trans. Amer. Math. Soc. 55 (1944), 19-52; MR 5,229d, Zbl 0063.00635. (1944) Zbl0063.00635MR0009963
- Bruck R.H., A Survey of Binary Systems, Springer-Verlag, 1971; MR 20{#}76, Zbl 206:30301. Zbl0141.01401MR0093552
- Chein O., Pflugfelder H.O., Smith J.D.H. (eds.), Quasigroups and Loops: Theory and Applications, Sigma Series in Pure Math. 9, Heldermann Verlag, 1990; MR 93g:21033, Zbl 0719.20036. Zbl0719.20036MR1125806
- Kepka T., Structure of triabelian quasigroups, Comment. Math. Univ. Carolinae 17 (1976), 229-240; MR 53{#}10965, Zbl 0338.20097. (1976) Zbl0338.20097MR0407182
- Kepka T., A note on WA-quasigroups, Acta Univ. Carolin. Math. Phys. 19 (1978), 2 61-62; MR 80b:20094, Zbl 0382.20057. (1978) Zbl0382.20057MR0509348
- Kepka T., F-quasigroups isotopic to Moufang loops, Czechoslovak Math. J. 29 (1979), 62-83; MR 80b:20095, Zbl 0444.20067. (1979) Zbl0444.20067MR0518141
- Kepka T., Kinyon M.K., Phillips, The structure of F-quasigroups, in preparation. Zbl1133.20051
- Kinyon M.K., Phillips J.D., A note on trimedial quasigroups, Quasigroups & Related Systems 9 (2002), 65-66; CMP 1 943 753, Zbl pre01894750. (2002) Zbl1023.20034
- McCune W.W., OTTER Reference Manual and Guide, Technical Memorandum ANL/MCS-TM-263, Argonne National Laboratory, 2003; or see http://www.mcs.anl.gov/AR/otter/.
- Murdoch D.C., Quasi-groups which satisfy certain generalized associative laws, Amer. J. Math. 61 (1939), 509-522; Zbl 0020.34702. (1939) Zbl0020.34702MR1507391
- Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Math. 8, Heldermann Verlag, Berlin, 1990; MR 93g:20132, Zbl 719:20036. Zbl0715.20043MR1125767
- Toyoda K., On axioms of linear functions, Proc. Imp. Acad. Tokyo 17 (1941), 221-227; MR 7,241g, Zbl 0061.02403. (1941) Zbl0061.02403MR0014105
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.