A factorization of quasiorder hypergroups

Ivan Chajda; Šárka Hošková

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 4, page 573-581
  • ISSN: 0010-2628

Abstract

top
The contribution is devoted to the question of the interchange of the construction of a quasiorder hypergroup from a quasiordered set and the factorization.

How to cite

top

Chajda, Ivan, and Hošková, Šárka. "A factorization of quasiorder hypergroups." Commentationes Mathematicae Universitatis Carolinae 45.4 (2004): 573-581. <http://eudml.org/doc/249336>.

@article{Chajda2004,
abstract = {The contribution is devoted to the question of the interchange of the construction of a quasiorder hypergroup from a quasiordered set and the factorization.},
author = {Chajda, Ivan, Hošková, Šárka},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quasiorder hypergroup; congruence on a hypergroup; relational system; quasiorder hypergroups; congruences on hypergroups; relational systems},
language = {eng},
number = {4},
pages = {573-581},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A factorization of quasiorder hypergroups},
url = {http://eudml.org/doc/249336},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Chajda, Ivan
AU - Hošková, Šárka
TI - A factorization of quasiorder hypergroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 4
SP - 573
EP - 581
AB - The contribution is devoted to the question of the interchange of the construction of a quasiorder hypergroup from a quasiordered set and the factorization.
LA - eng
KW - quasiorder hypergroup; congruence on a hypergroup; relational system; quasiorder hypergroups; congruences on hypergroups; relational systems
UR - http://eudml.org/doc/249336
ER -

References

top
  1. Corsini P., Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993. Zbl0785.20032MR1237639
  2. Corsini P., Hypergraphs and hypergroups, Algebra Universalis 35 (1996), 548-555. (1996) Zbl0858.05081MR1392282
  3. Corsini P., On the hypergroup associated with a binary relation, Mult.-Valued Log. 5 (2000), 407-419. (2000) MR1802833
  4. Corsini P., Leoreanu V., Applications of Hyperstructure Theory, Kluwer Academic Publishers, Dordrecht, Hardbound, ISBN 1-4020-1222-5, 2003. Zbl1027.20051MR1980853
  5. Corsini P., Leoreanu V., Hypergroups and binary relations, Algebra Universalis 43 (2000), 321-330. (2000) Zbl1016.20056MR1785319
  6. Corsini P., Leoreanu V., Hypergroups associated with graphs, Ital. J. Pure Appl. Math. 4 (1998), 119-126. (1998) 
  7. Chajda I., Algebraic Theory of Tolerance Relations, The Palacky University Olomouc, 1991. Zbl0747.08001
  8. Chajda I., Congruences in transitive systems, Math. Notes (Miskolc), to appear. 
  9. Chvalina J., Functional Graphs, Quasi-ordered Sets and Commutative Hypergroups, Masarykova Universita, Brno, 1995 (in Czech). 
  10. Chvalina J., Hošková Š., Abelization of quasi-hypergroups as reflexion, Second Conf. Math. and Physics at Technical Universities, Military Academy Brno, Proc. of Contributions, MA Brno (2001), pp.47-53 (in Czech). 
  11. Chvalina J., Hošková Š., Abelization of weakly associative hyperstructures based on their direct squares, Acta Math. Inform. Univ. Ostraviensis, 2003, 12p. MR2037307
  12. Marty F., Sur une généralisation de la notion de groupe, Huitième Congr. math. Scan. (1934), Stockholm, pp.45-49. Zbl0012.05303
  13. Rosenberg I., Hypergroups and join spaces determined by relations, Ital. J. Pure Appl. Math. 4 (1998), 93-101. (1998) Zbl0962.20055MR1695479
  14. Vougiouklis T., Hyperstructures and their Representations, Hadronic Press Monographs in Mathematics, Palm Harbor, Florida, 1994. Zbl0828.20076MR1270451

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.