Reflection loops of spaces with congruence and hyperbolic incidence structure
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 2, page 303-320
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKreuzer, Alexander. "Reflection loops of spaces with congruence and hyperbolic incidence structure." Commentationes Mathematicae Universitatis Carolinae 45.2 (2004): 303-320. <http://eudml.org/doc/249341>.
@article{Kreuzer2004,
abstract = {In an absolute space $(P, \mathfrak \{L\}, \equiv , \alpha )$ with congruence there are line reflections and point reflections. With the help of point reflections one can define in a natural way an addition + of points which is only associative if the product of three point reflection is a point reflection again. In general, for example for the case that $(P, \mathfrak \{L\}, \alpha )$ is a linear space with hyperbolic incidence structure, the addition is not associative. $(P,+)$ is a K-loop or a Bruck loop.},
author = {Kreuzer, Alexander},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {ordered space with congruence; point reflection; Bol loop; K-loop; ordered spaces with congruences; point reflections; Bol loops; K-loops},
language = {eng},
number = {2},
pages = {303-320},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Reflection loops of spaces with congruence and hyperbolic incidence structure},
url = {http://eudml.org/doc/249341},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Kreuzer, Alexander
TI - Reflection loops of spaces with congruence and hyperbolic incidence structure
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 2
SP - 303
EP - 320
AB - In an absolute space $(P, \mathfrak {L}, \equiv , \alpha )$ with congruence there are line reflections and point reflections. With the help of point reflections one can define in a natural way an addition + of points which is only associative if the product of three point reflection is a point reflection again. In general, for example for the case that $(P, \mathfrak {L}, \alpha )$ is a linear space with hyperbolic incidence structure, the addition is not associative. $(P,+)$ is a K-loop or a Bruck loop.
LA - eng
KW - ordered space with congruence; point reflection; Bol loop; K-loop; ordered spaces with congruences; point reflections; Bol loops; K-loops
UR - http://eudml.org/doc/249341
ER -
References
top- Gabriele E., Karzel H., Point-reflection geometries, geometric K-loops and unitary geometries, Results Math. 32 66-72 (1997). (1997) MR1464674
- Karzel H., Recent developments on absolute geometries and algebraization by K-loops, Discrete Math. 208/209 387-409 (1999). (1999) Zbl0941.51002MR1725545
- Karzel H., Konrad A., Eigenschaften angeordneter Räume mit hyperbolischer Inzidenzstruktur I, Beiträge zur Geometrie und Algebra (TUM-Bericht M9415, München) 28 27-36 (1994). (1994) Zbl0873.51008MR1323631
- Karzel H., Konrad A., Kreuzer A., Eigenschaften angeordneter Räume mit hyperbolischer Inzidenzstruktur II, Beiträge zur Geometrie und Algebra (TUM-Bericht M9509, München) 33 7-14 (1995). (1995) Zbl0873.51010
- Karzel H., Konrad A., Kreuzer A., Zur projektiven Einbettung angeordneter Räume mit hyperbolischer Inzidenzstruktur, Beiträge zur Geometrie und Algebra (TUM-Bericht M9502, München) 30 17-27 (1995). (1995) Zbl0873.51009MR1323631
- Karzel H., Sörensen K., Windelberg D., Einführung in die Geometrie, UTB Vandenhoeck, Göttingen, 1973. MR0425748
- Konrad. A., Nichteuklidische Geometrie und K-Loops, Ph.D. Thesis, Technische Universität München, 1995. Zbl0861.51012
- Kreuzer A., Zur Einbettung von Inzidenzräumen und angeordneten Räumen, J. Geom. 35 132-151 (1989). (1989) Zbl0678.51007MR1002650
- Kreuzer A., Inner mappings of Bool loops, Math. Proc. Cambridge Philos. Soc. 123 53-57 (1998). (1998) MR1474864
- Kroll H.-J., Sörensen K., Hyperbolische Räume, Beiträge zur Geometrie und Algebra (TUM-Bericht M9608, München) 34 37-44 (1996). (1996)
- Pflugfelder H.O., Quasigroups and Loops: Introduction, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
- Sabinin L.V., Sabinina L.L., Sbitneva L.V., On the notion of gyrogroups, Aequationes Math. 56 11-17 (1998). (1998) MR1628291
- Sörensen K., Ebenen mit Kongruenz, J. Geom. 22 15-30 (1984). (1984) MR0756947
- Sörensen K., Projektive Einbettung angeordneter Räume, Beiträge zur Geometrie und Algebra (TUM-M 8612, TU München) 15 8-15 (1986). (1986)
- Sörensen K., Eine Bemerkung zu absoluten Ebenen, Beiträge zur Geometrie und Algebra (TUM-M 9315, TU München) 24 23-30 (1993). (1993)
- Ungar A.A., The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Results Math. 16 168-179 (1989). (1989) Zbl0693.20067MR1020224
- Ungar A.A., Weakly associative groups, Results Math. 17 149-168 (1990). (1990) Zbl0699.20055MR1039282
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.