Reflection loops of spaces with congruence and hyperbolic incidence structure

Alexander Kreuzer

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 2, page 303-320
  • ISSN: 0010-2628

Abstract

top
In an absolute space ( P , 𝔏 , , α ) with congruence there are line reflections and point reflections. With the help of point reflections one can define in a natural way an addition + of points which is only associative if the product of three point reflection is a point reflection again. In general, for example for the case that ( P , 𝔏 , α ) is a linear space with hyperbolic incidence structure, the addition is not associative. ( P , + ) is a K-loop or a Bruck loop.

How to cite

top

Kreuzer, Alexander. "Reflection loops of spaces with congruence and hyperbolic incidence structure." Commentationes Mathematicae Universitatis Carolinae 45.2 (2004): 303-320. <http://eudml.org/doc/249341>.

@article{Kreuzer2004,
abstract = {In an absolute space $(P, \mathfrak \{L\}, \equiv , \alpha )$ with congruence there are line reflections and point reflections. With the help of point reflections one can define in a natural way an addition + of points which is only associative if the product of three point reflection is a point reflection again. In general, for example for the case that $(P, \mathfrak \{L\}, \alpha )$ is a linear space with hyperbolic incidence structure, the addition is not associative. $(P,+)$ is a K-loop or a Bruck loop.},
author = {Kreuzer, Alexander},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {ordered space with congruence; point reflection; Bol loop; K-loop; ordered spaces with congruences; point reflections; Bol loops; K-loops},
language = {eng},
number = {2},
pages = {303-320},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Reflection loops of spaces with congruence and hyperbolic incidence structure},
url = {http://eudml.org/doc/249341},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Kreuzer, Alexander
TI - Reflection loops of spaces with congruence and hyperbolic incidence structure
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 2
SP - 303
EP - 320
AB - In an absolute space $(P, \mathfrak {L}, \equiv , \alpha )$ with congruence there are line reflections and point reflections. With the help of point reflections one can define in a natural way an addition + of points which is only associative if the product of three point reflection is a point reflection again. In general, for example for the case that $(P, \mathfrak {L}, \alpha )$ is a linear space with hyperbolic incidence structure, the addition is not associative. $(P,+)$ is a K-loop or a Bruck loop.
LA - eng
KW - ordered space with congruence; point reflection; Bol loop; K-loop; ordered spaces with congruences; point reflections; Bol loops; K-loops
UR - http://eudml.org/doc/249341
ER -

References

top
  1. Gabriele E., Karzel H., Point-reflection geometries, geometric K-loops and unitary geometries, Results Math. 32 66-72 (1997). (1997) MR1464674
  2. Karzel H., Recent developments on absolute geometries and algebraization by K-loops, Discrete Math. 208/209 387-409 (1999). (1999) Zbl0941.51002MR1725545
  3. Karzel H., Konrad A., Eigenschaften angeordneter Räume mit hyperbolischer Inzidenzstruktur I, Beiträge zur Geometrie und Algebra (TUM-Bericht M9415, München) 28 27-36 (1994). (1994) Zbl0873.51008MR1323631
  4. Karzel H., Konrad A., Kreuzer A., Eigenschaften angeordneter Räume mit hyperbolischer Inzidenzstruktur II, Beiträge zur Geometrie und Algebra (TUM-Bericht M9509, München) 33 7-14 (1995). (1995) Zbl0873.51010
  5. Karzel H., Konrad A., Kreuzer A., Zur projektiven Einbettung angeordneter Räume mit hyperbolischer Inzidenzstruktur, Beiträge zur Geometrie und Algebra (TUM-Bericht M9502, München) 30 17-27 (1995). (1995) Zbl0873.51009MR1323631
  6. Karzel H., Sörensen K., Windelberg D., Einführung in die Geometrie, UTB Vandenhoeck, Göttingen, 1973. MR0425748
  7. Konrad. A., Nichteuklidische Geometrie und K-Loops, Ph.D. Thesis, Technische Universität München, 1995. Zbl0861.51012
  8. Kreuzer A., Zur Einbettung von Inzidenzräumen und angeordneten Räumen, J. Geom. 35 132-151 (1989). (1989) Zbl0678.51007MR1002650
  9. Kreuzer A., Inner mappings of Bool loops, Math. Proc. Cambridge Philos. Soc. 123 53-57 (1998). (1998) MR1474864
  10. Kroll H.-J., Sörensen K., Hyperbolische Räume, Beiträge zur Geometrie und Algebra (TUM-Bericht M9608, München) 34 37-44 (1996). (1996) 
  11. Pflugfelder H.O., Quasigroups and Loops: Introduction, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
  12. Sabinin L.V., Sabinina L.L., Sbitneva L.V., On the notion of gyrogroups, Aequationes Math. 56 11-17 (1998). (1998) MR1628291
  13. Sörensen K., Ebenen mit Kongruenz, J. Geom. 22 15-30 (1984). (1984) MR0756947
  14. Sörensen K., Projektive Einbettung angeordneter Räume, Beiträge zur Geometrie und Algebra (TUM-M 8612, TU München) 15 8-15 (1986). (1986) 
  15. Sörensen K., Eine Bemerkung zu absoluten Ebenen, Beiträge zur Geometrie und Algebra (TUM-M 9315, TU München) 24 23-30 (1993). (1993) 
  16. Ungar A.A., The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Results Math. 16 168-179 (1989). (1989) Zbl0693.20067MR1020224
  17. Ungar A.A., Weakly associative groups, Results Math. 17 149-168 (1990). (1990) Zbl0699.20055MR1039282

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.