Regular potentials of additive functionals in semidynamical systems
Nedra Belhaj Rhouma; Mounir Bezzarga
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 3, page 555-572
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRhouma, Nedra Belhaj, and Bezzarga, Mounir. "Regular potentials of additive functionals in semidynamical systems." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 555-572. <http://eudml.org/doc/249342>.
@article{Rhouma2004,
abstract = {We consider a semidynamical system $(X,\mathcal \{B\},\Phi ,w)$. We introduce the cone $\mathbb \{A\}$ of continuous additive functionals defined on $X$ and the cone $\mathcal \{P\}$ of regular potentials. We define an order relation “$\le $” on $\mathbb \{A\}$ and a specific order “$\prec $” on $\mathcal \{P\}$. We will investigate the properties of $\mathbb \{A\}$ and $\mathcal \{P\}$ and we will establish the relationship between the two cones.},
author = {Rhouma, Nedra Belhaj, Bezzarga, Mounir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {additive functional; excessive functions; regular potential; semidynamical system; specific order; additive functional; excessive functions; regular potential; semidynamical system; specific order},
language = {eng},
number = {3},
pages = {555-572},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Regular potentials of additive functionals in semidynamical systems},
url = {http://eudml.org/doc/249342},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Rhouma, Nedra Belhaj
AU - Bezzarga, Mounir
TI - Regular potentials of additive functionals in semidynamical systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 555
EP - 572
AB - We consider a semidynamical system $(X,\mathcal {B},\Phi ,w)$. We introduce the cone $\mathbb {A}$ of continuous additive functionals defined on $X$ and the cone $\mathcal {P}$ of regular potentials. We define an order relation “$\le $” on $\mathbb {A}$ and a specific order “$\prec $” on $\mathcal {P}$. We will investigate the properties of $\mathbb {A}$ and $\mathcal {P}$ and we will establish the relationship between the two cones.
LA - eng
KW - additive functional; excessive functions; regular potential; semidynamical system; specific order; additive functional; excessive functions; regular potential; semidynamical system; specific order
UR - http://eudml.org/doc/249342
ER -
References
top- Bezzarga M., Coexcessive functions and duality for semi-dynamical systems, Rev. Roumaine Math. Pures Appl. 42 1-2 (1997), 15-30. (1997) MR1650071
- Bezzarga M., Théorie du potentiel pour les systèmes semi-dynamiques, Ph.D. Thesis, Faculty of Mathematics of the Bucharest University, Dec. 2000. Zbl0861.31005
- Bezzarga M., Bucur Gh., Théorie du potentiel pour les systèmes semi-dynamiques, Rev. Roumaine Math. Pures Appl. 39 (1994), 439-456. (1994) Zbl0861.31005MR1298884
- Bezzarga M., Bucur Gh., Duality for Semi-Dynamical Systems, Potential Theory - ICPT94, Walter de Gruyter, Berlin-New York, 1996, pp.275-286. Zbl0861.31006MR1404713
- Bezzarga M., Moldoveanu E., Secelean N., Dual resolvent for semidynamical systems, preprint (accessible at: http://adela.karlin.mff.cuni.cz/katedry/kma/pt).
- Bhatia N.P., Hájek O., Local Semi-Dynamical Systems, Lecture Notes in Math. 90, Springer, Berlin-New York, 1969. MR0251328
- Blumenthal R.M., Getoor R.K., Markov Processes and Potential Theory, Academic Press, New York and London, 1968. Zbl0169.49204MR0264757
- Boboc N., Bucur Gh., Cornea A., Order and Convexity in Potential Theory, Lecture Notes in Math. 853, Springer, Berlin, 1981. Zbl0534.31001MR0613980
- Boboc N., Bucur Gh., Potential theory on ordered sets II, Rev. Roumaine Math. Pures Appl. 43 (1998), 685-720. (1998) Zbl0995.31008MR1845086
- Dellacherie C., Meyer P.A., Probabilités et potentiel, Chap. XV, Hermann, Paris, 1987. Zbl0624.60084MR0488194
- Getoor R.K., Transience and Recurrence of Markov Process, Séminaire de Probabilité XIV 1978-1979, Lecture Notes in Math. 784, Springer, Berlin, 1980, pp.397-409. MR0580144
- Hájek O., Dynamical Systems in the Plane, Academic Press, London-New York, 1968. MR0240418
- Saperstone S.H., Semidynamical Systems in Infinite Dimensional Space, App. Math. Sciences 37, Springer, New York-Berlin, 1981. MR0638477
- Sharpe M., General Theory of Markov Process, Pure and Applied Mathematics, 133, Academic Press, Inc., Boston, MA, 1988. MR0958914
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.