Regular potentials of additive functionals in semidynamical systems

Nedra Belhaj Rhouma; Mounir Bezzarga

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 3, page 555-572
  • ISSN: 0010-2628

Abstract

top
We consider a semidynamical system ( X , , Φ , w ) . We introduce the cone 𝔸 of continuous additive functionals defined on X and the cone 𝒫 of regular potentials. We define an order relation “ ” on 𝔸 and a specific order “ ” on 𝒫 . We will investigate the properties of 𝔸 and 𝒫 and we will establish the relationship between the two cones.

How to cite

top

Rhouma, Nedra Belhaj, and Bezzarga, Mounir. "Regular potentials of additive functionals in semidynamical systems." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 555-572. <http://eudml.org/doc/249342>.

@article{Rhouma2004,
abstract = {We consider a semidynamical system $(X,\mathcal \{B\},\Phi ,w)$. We introduce the cone $\mathbb \{A\}$ of continuous additive functionals defined on $X$ and the cone $\mathcal \{P\}$ of regular potentials. We define an order relation “$\le $” on $\mathbb \{A\}$ and a specific order “$\prec $” on $\mathcal \{P\}$. We will investigate the properties of $\mathbb \{A\}$ and $\mathcal \{P\}$ and we will establish the relationship between the two cones.},
author = {Rhouma, Nedra Belhaj, Bezzarga, Mounir},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {additive functional; excessive functions; regular potential; semidynamical system; specific order; additive functional; excessive functions; regular potential; semidynamical system; specific order},
language = {eng},
number = {3},
pages = {555-572},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Regular potentials of additive functionals in semidynamical systems},
url = {http://eudml.org/doc/249342},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Rhouma, Nedra Belhaj
AU - Bezzarga, Mounir
TI - Regular potentials of additive functionals in semidynamical systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 555
EP - 572
AB - We consider a semidynamical system $(X,\mathcal {B},\Phi ,w)$. We introduce the cone $\mathbb {A}$ of continuous additive functionals defined on $X$ and the cone $\mathcal {P}$ of regular potentials. We define an order relation “$\le $” on $\mathbb {A}$ and a specific order “$\prec $” on $\mathcal {P}$. We will investigate the properties of $\mathbb {A}$ and $\mathcal {P}$ and we will establish the relationship between the two cones.
LA - eng
KW - additive functional; excessive functions; regular potential; semidynamical system; specific order; additive functional; excessive functions; regular potential; semidynamical system; specific order
UR - http://eudml.org/doc/249342
ER -

References

top
  1. Bezzarga M., Coexcessive functions and duality for semi-dynamical systems, Rev. Roumaine Math. Pures Appl. 42 1-2 (1997), 15-30. (1997) MR1650071
  2. Bezzarga M., Théorie du potentiel pour les systèmes semi-dynamiques, Ph.D. Thesis, Faculty of Mathematics of the Bucharest University, Dec. 2000. Zbl0861.31005
  3. Bezzarga M., Bucur Gh., Théorie du potentiel pour les systèmes semi-dynamiques, Rev. Roumaine Math. Pures Appl. 39 (1994), 439-456. (1994) Zbl0861.31005MR1298884
  4. Bezzarga M., Bucur Gh., Duality for Semi-Dynamical Systems, Potential Theory - ICPT94, Walter de Gruyter, Berlin-New York, 1996, pp.275-286. Zbl0861.31006MR1404713
  5. Bezzarga M., Moldoveanu E., Secelean N., Dual resolvent for semidynamical systems, preprint (accessible at: http://adela.karlin.mff.cuni.cz/katedry/kma/pt). 
  6. Bhatia N.P., Hájek O., Local Semi-Dynamical Systems, Lecture Notes in Math. 90, Springer, Berlin-New York, 1969. MR0251328
  7. Blumenthal R.M., Getoor R.K., Markov Processes and Potential Theory, Academic Press, New York and London, 1968. Zbl0169.49204MR0264757
  8. Boboc N., Bucur Gh., Cornea A., Order and Convexity in Potential Theory, Lecture Notes in Math. 853, Springer, Berlin, 1981. Zbl0534.31001MR0613980
  9. Boboc N., Bucur Gh., Potential theory on ordered sets II, Rev. Roumaine Math. Pures Appl. 43 (1998), 685-720. (1998) Zbl0995.31008MR1845086
  10. Dellacherie C., Meyer P.A., Probabilités et potentiel, Chap. XV, Hermann, Paris, 1987. Zbl0624.60084MR0488194
  11. Getoor R.K., Transience and Recurrence of Markov Process, Séminaire de Probabilité XIV 1978-1979, Lecture Notes in Math. 784, Springer, Berlin, 1980, pp.397-409. MR0580144
  12. Hájek O., Dynamical Systems in the Plane, Academic Press, London-New York, 1968. MR0240418
  13. Saperstone S.H., Semidynamical Systems in Infinite Dimensional Space, App. Math. Sciences 37, Springer, New York-Berlin, 1981. MR0638477
  14. Sharpe M., General Theory of Markov Process, Pure and Applied Mathematics, 133, Academic Press, Inc., Boston, MA, 1988. MR0958914

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.