Infinite simple Bol loops

Hubert Kiechle; Michael K. Kinyon

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 2, page 275-278
  • ISSN: 0010-2628

Abstract

top
If the left multiplication group of a loop is simple, then the loop is simple. We use this observation to give examples of infinite simple Bol loops.

How to cite

top

Kiechle, Hubert, and Kinyon, Michael K.. "Infinite simple Bol loops." Commentationes Mathematicae Universitatis Carolinae 45.2 (2004): 275-278. <http://eudml.org/doc/249352>.

@article{Kiechle2004,
abstract = {If the left multiplication group of a loop is simple, then the loop is simple. We use this observation to give examples of infinite simple Bol loops.},
author = {Kiechle, Hubert, Kinyon, Michael K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Bol loop; K-loop; Bruck loop; Bol loops; K-loops; Bruck loops},
language = {eng},
number = {2},
pages = {275-278},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Infinite simple Bol loops},
url = {http://eudml.org/doc/249352},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Kiechle, Hubert
AU - Kinyon, Michael K.
TI - Infinite simple Bol loops
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 2
SP - 275
EP - 278
AB - If the left multiplication group of a loop is simple, then the loop is simple. We use this observation to give examples of infinite simple Bol loops.
LA - eng
KW - Bol loop; K-loop; Bruck loop; Bol loops; K-loops; Bruck loops
UR - http://eudml.org/doc/249352
ER -

References

top
  1. Aschbacher M., Kinyon M.K., Phillips J.D., Finite Bruck loops, submitted. Available at http://www.arXiv.org/abs/math.GR/0401193. Zbl1102.20046
  2. Bruck R.H., A Survey of Binary Systems, Springer-Verlag, Berlin-Heidelberg-New York, 1971; MR 20{#}76, Zbl. 206:30301. Zbl0141.01401MR0093552
  3. Foguel T., Ungar A.A., Gyrogroups and the decomposition of groups into twisted subgroups and subgroups, Pacific J. Math. 197 (2001), 1-11; MR 2002e:20142, Zbl. pre01589578. (2001) Zbl1066.20068MR1810204
  4. Huppert B., Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967; MR 37 {#}302, Zbl. 0217.07201. Zbl0412.20002MR0224703
  5. Kiechle H., Theory of K-loops, Lecture Notes in Math. 1778, Springer-Verlag, Berlin-Heidelberg-New York, 2002; MR 2003d:20109, Zbl. 0997.20059. Zbl0997.20059MR1899153
  6. Nagy P.T., Strambach K., Loops in Group Theory and Lie Theory, de Gruyter Expositions in Mathematics 35, Walter de Gruyter, Berlin-New York, 2003; MR 2003d:20110, Zbl. pre01732502. Zbl1050.22001MR1899331
  7. Rózga K., On central extensions of gyrocommutative gyrogroups, Pacific J. Math. 193 (2000), 201-218; MR 2001a:20115, Zbl. 1010.20055. (2000) MR1748188
  8. Scott W.R., Group Theory, Dover, New York, 1987; MR 88d:20001, Zbl. 0641.20001. Zbl0897.20029MR0896269

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.