Monotonicity of the maximum of inner product norms

Boris Lavrič

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 3, page 383-388
  • ISSN: 0010-2628

Abstract

top
Let 𝕂 be the field of real or complex numbers. In this note we characterize all inner product norms p 1 , ... , p m on 𝕂 n for which the norm x max { p 1 ( x ) , ... , p m ( x ) } on 𝕂 n is monotonic.

How to cite

top

Lavrič, Boris. "Monotonicity of the maximum of inner product norms." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 383-388. <http://eudml.org/doc/249365>.

@article{Lavrič2004,
abstract = {Let $\mathbb \{K\}$ be the field of real or complex numbers. In this note we characterize all inner product norms $p_1,\ldots ,p_m$ on $\mathbb \{K\}^n$ for which the norm $x\longmapsto \max \lbrace p_1(x),\ldots ,p_m(x)\rbrace $ on $\mathbb \{K\}^n$ is monotonic.},
author = {Lavrič, Boris},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {finite dimensional vector space; monotonic norm; absolute norm; inner product norm; finite dimensional vector space; monotonic norm; absolute norm; inner product norm},
language = {eng},
number = {3},
pages = {383-388},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Monotonicity of the maximum of inner product norms},
url = {http://eudml.org/doc/249365},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Lavrič, Boris
TI - Monotonicity of the maximum of inner product norms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 383
EP - 388
AB - Let $\mathbb {K}$ be the field of real or complex numbers. In this note we characterize all inner product norms $p_1,\ldots ,p_m$ on $\mathbb {K}^n$ for which the norm $x\longmapsto \max \lbrace p_1(x),\ldots ,p_m(x)\rbrace $ on $\mathbb {K}^n$ is monotonic.
LA - eng
KW - finite dimensional vector space; monotonic norm; absolute norm; inner product norm; finite dimensional vector space; monotonic norm; absolute norm; inner product norm
UR - http://eudml.org/doc/249365
ER -

References

top
  1. Bauer F.L., Stoer J., Witzgall C., Absolute and monotonic norms, Numer. Math. 3 (1961), 257-264. (1961) Zbl0111.01602MR0130104
  2. Horn R.A., Johnson C.R., Matrix Analysis, Cambridge University Press, New York, 1985. Zbl0801.15001MR0832183
  3. Johnson C.R., Nylen P., Monotonicity properties of norms, Linear Algebra Appl. 148 (1991), 43-58. (1991) Zbl0717.15015MR1090752
  4. Lavrič B., Monotonicity and * orthant-monotonicity of certain maximum norms, Linear Algebra Appl. 367 (2003), 29-36. (2003) Zbl1038.15017MR1976908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.