A characterization of holomorphic germs on compact perfect sets
Graciela Carboni; Angel Rafael Larotonda
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 3, page 483-490
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCarboni, Graciela, and Larotonda, Angel Rafael. "A characterization of holomorphic germs on compact perfect sets." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 483-490. <http://eudml.org/doc/249368>.
@article{Carboni2004,
abstract = {Let $K\subseteq \mathbb \{C\}$ be a perfect compact set, $E$ a quasi-complete locally convex space over $\mathbb \{C\}$ and $f:K\rightarrow E$ a map. In this note we give a necessary and sufficient condition — in terms of differential quotients — for $f$ to have a holomorphic extension on a neighborhood of $K$.},
author = {Carboni, Graciela, Larotonda, Angel Rafael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {differential quotients; holomorphic extensions; difference quotients; holomorphic extensions},
language = {eng},
number = {3},
pages = {483-490},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A characterization of holomorphic germs on compact perfect sets},
url = {http://eudml.org/doc/249368},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Carboni, Graciela
AU - Larotonda, Angel Rafael
TI - A characterization of holomorphic germs on compact perfect sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 483
EP - 490
AB - Let $K\subseteq \mathbb {C}$ be a perfect compact set, $E$ a quasi-complete locally convex space over $\mathbb {C}$ and $f:K\rightarrow E$ a map. In this note we give a necessary and sufficient condition — in terms of differential quotients — for $f$ to have a holomorphic extension on a neighborhood of $K$.
LA - eng
KW - differential quotients; holomorphic extensions; difference quotients; holomorphic extensions
UR - http://eudml.org/doc/249368
ER -
References
top- Bochnak J., Siciak J., Analytic functions in topological spaces, Studia Math. (1971), 39 77-112. (1971) MR0313811
- Dales H.G., Davie A., Quasianalytic Banach function algebras, J. Funct. Anal. (1973), 13 28-50. (1973) Zbl0254.46027MR0343038
- Grothendieck A., Sur certains espaces de fonctions holomorphes. I-II, J. Reine Angew. Math. (1953), 192 35-64, 77-95. (1953) Zbl0051.08704MR0058865
- Kriegl A., Michor P., The convenient setting of global analysis, Mathematical Surveys and Monograps, 53 (Chapter III), American Mathematical Society, Providence, RI, 1997. Zbl0889.58001MR1471480
- Malgrange B., Ideals of Differentiable Functions, Oxford Univ. Press, London, 1966. Zbl0177.18001MR0212575
- Tougeron J.C., Idéaux de fonctions différentiables, Ergebrisse 71, Springer, Heidelberg, 1972. Zbl0251.58001MR0440598
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.