Existence of a classical solution for linear parabolic systems of nondivergence form

Masashi Misawa

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 3, page 475-482
  • ISSN: 0010-2628

Abstract

top
We prove the unique existence of a classical solution for a linear parabolic system of nondivergence and nondiagonal form. The key ingredient is to combine the energy estimates with Schauder estimates and to obtain a uniform boundedness of a solution.

How to cite

top

Misawa, Masashi. "Existence of a classical solution for linear parabolic systems of nondivergence form." Commentationes Mathematicae Universitatis Carolinae 45.3 (2004): 475-482. <http://eudml.org/doc/249376>.

@article{Misawa2004,
abstract = {We prove the unique existence of a classical solution for a linear parabolic system of nondivergence and nondiagonal form. The key ingredient is to combine the energy estimates with Schauder estimates and to obtain a uniform boundedness of a solution.},
author = {Misawa, Masashi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linear parabolic system; nondivergence; nondiagonal form; $L^\{\infty \}$-estimate; Schauder estimate; linear parabolic systems; nondivergence form; classical solutions; Schauder estimates; gradient flows; -harmonic maps},
language = {eng},
number = {3},
pages = {475-482},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Existence of a classical solution for linear parabolic systems of nondivergence form},
url = {http://eudml.org/doc/249376},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Misawa, Masashi
TI - Existence of a classical solution for linear parabolic systems of nondivergence form
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 3
SP - 475
EP - 482
AB - We prove the unique existence of a classical solution for a linear parabolic system of nondivergence and nondiagonal form. The key ingredient is to combine the energy estimates with Schauder estimates and to obtain a uniform boundedness of a solution.
LA - eng
KW - linear parabolic system; nondivergence; nondiagonal form; $L^{\infty }$-estimate; Schauder estimate; linear parabolic systems; nondivergence form; classical solutions; Schauder estimates; gradient flows; -harmonic maps
UR - http://eudml.org/doc/249376
ER -

References

top
  1. Campanato S., Equazioni paraboliche del secondo ordine e spazi 2 , θ ( Ø m e g a , δ ) , Ann. Mat. Pura Appl. (4) 73 (1966), 55-102. (1966) MR0213737
  2. Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies {105}, Princeton Univ. Press, Princeton, NJ, 1983. Zbl0516.49003MR0717034
  3. Giaquinta M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser Verlag, Basel, 1993. Zbl0786.35001MR1239172
  4. Giaquinta M., Struwe M., On the regularity of weak solutions of nonlinear parabolic systems, Math. Z. 179 (1982), 437-451. (1982) MR0652852
  5. Misawa M., Existence and regularity results for the gradient flow for p -harmonic maps, Electron. J. Diff. Equations 1998 (1998), 36 1-17. (1998) Zbl0948.58013MR1658020
  6. Schlag W., Schauder and L p estimates for parabolic systems via Campanato spaces, Comm. Partial Differential Equations 21 7-8 (1996), 1141-1175. (1996) MR1399194
  7. Struwe M., Some regularity results for quasilinear parabolic systems, Comment. Math. Univ. Carolinae 26 (1985), 129-150. (1985) MR0797297

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.