On some properties of solutions of quasilinear degenerate parabolic equations in m × ( 0 , + )

Salvatore Bonafede; Francesco Nicolosi

Mathematica Bohemica (2004)

  • Volume: 129, Issue: 2, page 113-123
  • ISSN: 0862-7959

Abstract

top
We study the asymptotic behaviour near infinity of the weak solutions of the Cauchy-problem.

How to cite

top

Bonafede, Salvatore, and Nicolosi, Francesco. "On some properties of solutions of quasilinear degenerate parabolic equations in $\mathbb {R}^m \times (0, + \infty )$." Mathematica Bohemica 129.2 (2004): 113-123. <http://eudml.org/doc/249385>.

@article{Bonafede2004,
abstract = {We study the asymptotic behaviour near infinity of the weak solutions of the Cauchy-problem.},
author = {Bonafede, Salvatore, Nicolosi, Francesco},
journal = {Mathematica Bohemica},
keywords = {weak subsolution; degenerate equation; unbounded domain; asymptotic behaviour; weak subsolution; degenerate equation; unbounded domain; asymptotic behaviour},
language = {eng},
number = {2},
pages = {113-123},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some properties of solutions of quasilinear degenerate parabolic equations in $\mathbb \{R\}^m \times (0, + \infty )$},
url = {http://eudml.org/doc/249385},
volume = {129},
year = {2004},
}

TY - JOUR
AU - Bonafede, Salvatore
AU - Nicolosi, Francesco
TI - On some properties of solutions of quasilinear degenerate parabolic equations in $\mathbb {R}^m \times (0, + \infty )$
JO - Mathematica Bohemica
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 129
IS - 2
SP - 113
EP - 123
AB - We study the asymptotic behaviour near infinity of the weak solutions of the Cauchy-problem.
LA - eng
KW - weak subsolution; degenerate equation; unbounded domain; asymptotic behaviour; weak subsolution; degenerate equation; unbounded domain; asymptotic behaviour
UR - http://eudml.org/doc/249385
ER -

References

top
  1. Sobolev Spaces, Academic Press, New York, 1975. (1975) Zbl0314.46030MR0450957
  2. 10.1080/00036810108840970, Appl. Anal. 79 (2001), 405–418. (2001) MR1880951DOI10.1080/00036810108840970
  3. Quasilinear degenerate parabolic equations in unbounded domains, Comm. Appl. Anal. 8 (2004), 109–124. (2004) MR2036607
  4. Existence results for boundary value problems for a class of quasilinear parabolic equations, Actual problems in analysis and mathematical physics. Proceedings of the interntional symposium, Taormina, Italy, 1992, Dipartimento di Matematica, Università di Roma, pp. 95–117. (Italian) 
  5. 10.1002/mana.19961820111, Math. Nachr. 182 (1996), 243–260. (1996) MR1419896DOI10.1002/mana.19961820111
  6. 10.3233/ASY-1997-14202, Asymptotic Anal. 14 (1997), 117–156. (1997) MR1451209DOI10.3233/ASY-1997-14202
  7. Linear and quasi-linear equations of parabolic type, Translation of mathematical monographs, vol. 23, A.M.S., Providence, 1968. (1968) 
  8. 10.24033/bsmf.1620, Bull. Soc. Math. Fr. 93 (1965), 155–175. (1965) MR0194760DOI10.24033/bsmf.1620
  9. Weak solutions of boundary value problems for parabolic operators that may degenerate, Annali di Matematica 125 (1980), 135–155. (1980) MR0605207
  10. Boundary value problems for second-order linear degenerate parabolic operators, Le Matematiche 37 (1982), 319–327. (1982) MR0847836
  11. On existence and boundedness degenerate quasilinear parabolic equations of higher order, Dopov. Akad. Nauk. Ukr. 1 (1997), 17–21. (1997) MR1490697
  12. 10.1007/BF01783674, Annali di Matematica 175 (1998), 1–27. (1998) MR1748214DOI10.1007/BF01783674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.