The Vitali convergence theorem for the vector-valued McShane integral
Richard Reynolds; Charles W. Swartz
Mathematica Bohemica (2004)
- Volume: 129, Issue: 2, page 159-176
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topReferences
top- Linear Operators, Interscience, N.Y., 1958. (1958)
- 10.1215/ijm/1255986891, Illinois J. Math. 38 (1994), 127–147. (1994) MR1245838DOI10.1215/ijm/1255986891
- 10.1215/ijm/1255986628, Illinois J. Math. 39 (1995), 39–67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
- 10.1215/ijm/1255988170, Illinois J. Math. 34 (1990), 557–567. (1990) Zbl0685.28003MR1053562DOI10.1215/ijm/1255988170
- Some comments on the McShane and Henstock integrals, Real Anal. Exchange 23 (1997/98), 329–341. (1997/98) MR1609917
- Real and Abstract Analysis, Springer, N.Y., 1965. (1965) MR0367121
- On the McShane integrability of Banach space-valued functions, (to appear). (to appear) MR2083811
- McShane equi-integrability and Vitali’s convergence theorem, Math. Bohem. 129 (2004), 141–157. (2004) MR2073511
- Unified Integration, Academic Press, N.Y., 1983. (1983) Zbl0551.28001MR0740710
- Topics in the theory of Pettis integration, Rendiconti Inst. Mat. Univ. Trieste 23 (1991), 177–262. (1991) Zbl0798.46042MR1248654
- The Generalized McShane Integral for Vector-Valued Functions, Ph.D. dissertation, New Mexico State University, 1997. (1997)
- Real Analysis, Macmillan, N.Y., 1988. (1988) Zbl0704.26006MR0151555
- Measure, Integration, and Function Spaces, World Scientific, Singapore, 1994. (1994) Zbl0814.28001MR1337502
- 10.36045/bbms/1105737762, Bull. Belgian Math. Soc. 4 (1997), 589–599. (1997) Zbl1038.46505MR1600292DOI10.36045/bbms/1105737762
- Uniform integrability and mean convergence for the vector-valued McShane integral, Real Anal. Exchange 23 (1997/98), 303–312. (1997/98) MR1609766
- Introduction to Gauge Integrals, World Scientific, Singapore, 2001. (2001) Zbl0982.26006MR1845270