Notes on monadic n -valued Łukasiewicz algebras

A. V. Figallo; Inés Pascual; Alicia Ziliani

Mathematica Bohemica (2004)

  • Volume: 129, Issue: 3, page 255-271
  • ISSN: 0862-7959

Abstract

top
A topological duality for monadic n -valued Łukasiewicz algebras introduced by M. Abad (Abad, M.: Estructuras cíclica y monádica de un álgebra de Łukasiewicz n -valente. Notas de Lógica Matemática 36. Instituto de Matemática. Universidad Nacional del Sur, 1988) is determined. When restricted to the category of Q -distributive lattices and Q -homomorphims, it coincides with the duality obtained by R. Cignoli in 1991. A new characterization of congruences by means of certain closed and involutive subsets of the associated space is also obtained. This allowed us to describe subdirectly irreducible algebras in this variety, arriving by a different method at the results established by Abad.

How to cite

top

Figallo, A. V., Pascual, Inés, and Ziliani, Alicia. "Notes on monadic $n$-valued Łukasiewicz algebras." Mathematica Bohemica 129.3 (2004): 255-271. <http://eudml.org/doc/249395>.

@article{Figallo2004,
abstract = {A topological duality for monadic $n$-valued Łukasiewicz algebras introduced by M. Abad (Abad, M.: Estructuras cíclica y monádica de un álgebra de Łukasiewicz $n$-valente. Notas de Lógica Matemática 36. Instituto de Matemática. Universidad Nacional del Sur, 1988) is determined. When restricted to the category of $Q$-distributive lattices and $Q$-homomorphims, it coincides with the duality obtained by R. Cignoli in 1991. A new characterization of congruences by means of certain closed and involutive subsets of the associated space is also obtained. This allowed us to describe subdirectly irreducible algebras in this variety, arriving by a different method at the results established by Abad.},
author = {Figallo, A. V., Pascual, Inés, Ziliani, Alicia},
journal = {Mathematica Bohemica},
keywords = {$n$-valued Łukasiewicz algebras; Priestley spaces; congruences; subdirectly irreducible algebras; -valued Łukasiewicz algebras; Priestley spaces; congruences; subdirectly irreducible algebras},
language = {eng},
number = {3},
pages = {255-271},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Notes on monadic $n$-valued Łukasiewicz algebras},
url = {http://eudml.org/doc/249395},
volume = {129},
year = {2004},
}

TY - JOUR
AU - Figallo, A. V.
AU - Pascual, Inés
AU - Ziliani, Alicia
TI - Notes on monadic $n$-valued Łukasiewicz algebras
JO - Mathematica Bohemica
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 129
IS - 3
SP - 255
EP - 271
AB - A topological duality for monadic $n$-valued Łukasiewicz algebras introduced by M. Abad (Abad, M.: Estructuras cíclica y monádica de un álgebra de Łukasiewicz $n$-valente. Notas de Lógica Matemática 36. Instituto de Matemática. Universidad Nacional del Sur, 1988) is determined. When restricted to the category of $Q$-distributive lattices and $Q$-homomorphims, it coincides with the duality obtained by R. Cignoli in 1991. A new characterization of congruences by means of certain closed and involutive subsets of the associated space is also obtained. This allowed us to describe subdirectly irreducible algebras in this variety, arriving by a different method at the results established by Abad.
LA - eng
KW - $n$-valued Łukasiewicz algebras; Priestley spaces; congruences; subdirectly irreducible algebras; -valued Łukasiewicz algebras; Priestley spaces; congruences; subdirectly irreducible algebras
UR - http://eudml.org/doc/249395
ER -

References

top
  1. Estructuras cíclica y monádica de un álgebra de Łukasiewicz n -valente, Notas de Lógica Matemática 36. Inst. Mat. Univ. Nacional del Sur, Bahía Blanca, 1988. (1988) MR0935965
  2. Distributive Lattices, Univ. of Missouri Press, Columbia, 1974. (1974) MR0373985
  3. On the representation of quasi-Boolean algebras, Bull. Acad. Pol. Sci. C1. III 5 (1957), 259–261. (1957) MR0087628
  4. Łukasiewicz-Moisil Algebras, North-Holland, Amsterdam, 1991. (1991) MR1112790
  5. 10.1007/978-1-4613-8130-3_3, Graduate Texts in Mathematics, Vol. 78, Springer, Berlin, 1981. (1981) MR0648287DOI10.1007/978-1-4613-8130-3_3
  6. Algebras de Moisil de orden n , Ph.D. Thesis. Univ. Nacional del Sur, Bahía Blanca, 1969. (1969) 
  7. Moisil Algebras, Notas de Lógica Matemática 27. Instituto de Matemática Universidad Nacional del Sur, Bahía Blanca, 1970. (1970) Zbl0212.31701MR0345884
  8. 10.1016/0012-365X(91)90312-P, Discrete Math. 96 (1991), 183–197. (1991) Zbl0753.06012MR1139446DOI10.1016/0012-365X(91)90312-P
  9. 10.1007/BF00383451, Order 8 (1991), 299–315. (1991) MR1154933DOI10.1007/BF00383451
  10. 10.1017/S0004972700022966, Bull. Austral. Math. Soc. 16 (1977), 1–13. (1977) MR0434907DOI10.1017/S0004972700022966
  11. 10.1016/0012-365X(80)90112-0, Discrete Math. 30 (1980), 111–116. (1980) Zbl0453.06011MR0566427DOI10.1016/0012-365X(80)90112-0
  12. ϑ -valued Łukasiewicz-Moisil algebras and logics, Ph.D. Thesis, Univ. of Bucharest, 1981. (Romanian) (1981) 
  13. 10.1016/0012-365X(81)90254-5, Discrete Math. 33 (1981), 21–27. (1981) Zbl0455.06004MR0597224DOI10.1016/0012-365X(81)90254-5
  14. 10.1090/S0002-9947-1958-0095135-X, Trans. Am. Math. Soc. 87 (1958), 485–491. (1958) Zbl0228.06003MR0095135DOI10.1090/S0002-9947-1958-0095135-X
  15. Categories for the Working Mathematician, Springer, Berlin, 1988. (1988) 
  16. Le algebre di Łukasiewicz, An. Univ. Bucuresti, Ser. Acta Logica 6 (1963), 97–135. (1963) Zbl0241.02007MR0173597
  17. Notes sur les logiques non-chrysippiennes, Ann. Sci. Univ. Jassy 27 (1941), 86–98. (French) (1941) Zbl0025.29401MR0018621
  18. Algebras de de  Morgan, Curso dictado en la Univ. Nac. del Sur, Bahía Blanca, 1962. (1962) MR1420008
  19. 10.1112/blms/2.2.186, Bull. Lond. Math. Soc. 2 (1970), 186–190. (1970) Zbl0201.01802MR0265242DOI10.1112/blms/2.2.186
  20. 10.1112/plms/s3-24.3.507, Proc. Lond. Math. Soc. 4 (1972), 507–530. (1972) Zbl0323.06011MR0300949DOI10.1112/plms/s3-24.3.507
  21. Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 39–60. (1984) Zbl0557.06007MR0779844

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.