A step to Kurzweil-Henstock—an outline
Mathematica Bohemica (2004)
- Volume: 129, Issue: 3, page 297-304
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topCraven, B. D.. "A step to Kurzweil-Henstock—an outline." Mathematica Bohemica 129.3 (2004): 297-304. <http://eudml.org/doc/249402>.
@article{Craven2004,
abstract = {A short approach to the Kurzweil-Henstock integral is outlined, based on approximating a real function on a compact interval by suitable step-functions, and using filterbase convergence to define the integral. The properties of the integral are then easy to establish.},
author = {Craven, B. D.},
journal = {Mathematica Bohemica},
keywords = {integral; Kurzweil-Henstock integral; step-function; filterbase; Kurzweil-Henstock integral; step-function; filterbase},
language = {eng},
number = {3},
pages = {297-304},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A step to Kurzweil-Henstock—an outline},
url = {http://eudml.org/doc/249402},
volume = {129},
year = {2004},
}
TY - JOUR
AU - Craven, B. D.
TI - A step to Kurzweil-Henstock—an outline
JO - Mathematica Bohemica
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 129
IS - 3
SP - 297
EP - 304
AB - A short approach to the Kurzweil-Henstock integral is outlined, based on approximating a real function on a compact interval by suitable step-functions, and using filterbase convergence to define the integral. The properties of the integral are then easy to establish.
LA - eng
KW - integral; Kurzweil-Henstock integral; step-function; filterbase; Kurzweil-Henstock integral; step-function; filterbase
UR - http://eudml.org/doc/249402
ER -
References
top- Lebesgue Measure and Integral, Pitman, Boston, 1982. (1982) Zbl0491.28001MR0733102
- Topology, Allyn & Bacon, Boston, 1966. (1966) Zbl0144.21501MR0193606
- Linear Analysis, Butterworths, 1967. (1967) Zbl0172.39001MR0419707
- The General Theory of Integration, Clarendon Press, Oxford, U.K., 1991. (1991) Zbl0745.26006MR1134656
- Nichtabsolut konvergente Intgegrale, Teubner, Leipzig, 1980. (1980) MR0597703
- The Kurzweil-Henstock Integral and its Differentials, Marcel Dekker, New York, 2001. (2001) Zbl0984.26002MR1837270
- Lanzhou Lectures on Integration, World Scientific, Singapore, 1989. (1989) MR1050957
- The Integral: an easy approach after Kurzweil and Henstock, Cambridge University Press, 2000. (2000) MR1756319
- Handbook of Analysis and its Foundations, Academic Press, San Diego, 1997 (Chapter 24: Generalized Riemann integrals). (1997 (Chapter 24: Generalized Riemann integrals)) MR1417259
- Integration on : Kurzweil Theory, Charles University, Praha, 1999. (Czech) (1999)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.