Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson
- [1] Mathematisches Institut der Universität Freiburg Eckerstr.1 79104 Freiburg, Deutschland
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 381-396
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topWallisser, Rolf. "Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 381-396. <http://eudml.org/doc/249419>.
@article{Wallisser2005,
abstract = {Let $Q$ be a nonconstant polynomial with integer coefficients and without zeros at the non–negative integers. Essentially with the method of Hermite, a new proof is given on linear independence of values at rational points of the function\begin\{align*\} G(x) = \sum \limits \_\{n=0\}^\infty ~ \frac\{x^n\}\{Q(1) Q(2)\cdots Q(n)\}. \end\{align*\}},
affiliation = {Mathematisches Institut der Universität Freiburg Eckerstr.1 79104 Freiburg, Deutschland},
author = {Wallisser, Rolf},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {381-396},
publisher = {Université Bordeaux 1},
title = {Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson},
url = {http://eudml.org/doc/249419},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Wallisser, Rolf
TI - Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 381
EP - 396
AB - Let $Q$ be a nonconstant polynomial with integer coefficients and without zeros at the non–negative integers. Essentially with the method of Hermite, a new proof is given on linear independence of values at rational points of the function\begin{align*} G(x) = \sum \limits _{n=0}^\infty ~ \frac{x^n}{Q(1) Q(2)\cdots Q(n)}. \end{align*}
LA - eng
UR - http://eudml.org/doc/249419
ER -
References
top- P. Bundschuh, R. Wallisser, Maße für die lineare Unabhängigkeit von Werten ganz transzendenter Lösungen gewisser Funktionalgleichungen I Bd. 69 (1999) II Bd. 73 (2003). Abh. Math Sem. Univ. Hamburg. Zbl1041.11050
- F. Carlson, Sur une propriété arithmétique de quelques fonctions entières. Arkiv för Mathematik, Astronomi och Fysik. Bd 25A. N: 07 (1935). Zbl0011.39202
- R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der höheren Kongruenzen, Abh. Akad. Wiss. Göttingen 23 (1878), 3–37.
- N.I. Fel’dman, Yu.V. Nesterenko, Transcendental Numbers, Number Theory IV. Encycl. of Math. Sc. 44 (1998), Springer. Zbl0885.11004MR1603608
- I. Gerst, J. Brillhart, On the prime divisors of polynomials. Amer. Math. Monthly 78 (1971). Zbl0214.30604MR279071
- H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, 2nd ed., Physica, Würzburg, 1965.
- D.Hilbert, Über die Transcendenz der Zahlen und . Math. Ann. 43 (1893), 216–219.
- A. Hurwitz, Beweis der Transzendenz der Zahl . Math. Ann. 43 (1893), 220–221. MR1510809
- T. Nagell, Généralisation d’un théorème de Tchebycheff. Journ. de Math. ( serie), tome IV (1921). Zbl48.1173.01
- O. Perron, Irrationalzahlen. Chelsea, New York, (1951). Zbl0029.20303
- I. Schur, Über die Existenz unendlich vieler Primzahlen in einigen speziellen arithmetischen Progressionen. S.–B. Berlin. Math. Ges. 11 (1912), 40–50. Zbl43.0261.02
- Th. Skolem, Some theorems on irrationality and linear independence. Skand. Mat. Kongr. 11, Trondheim 1949, 77–98. Zbl0048.03304MR53981
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.