Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson

Rolf Wallisser[1]

  • [1] Mathematisches Institut der Universität Freiburg Eckerstr.1 79104 Freiburg, Deutschland

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 381-396
  • ISSN: 1246-7405

Abstract

top
Let Q be a nonconstant polynomial with integer coefficients and without zeros at the non–negative integers. Essentially with the method of Hermite, a new proof is given on linear independence of values at rational points of the function G ( x ) = n = 0 x n Q ( 1 ) Q ( 2 ) Q ( n ) .

How to cite

top

Wallisser, Rolf. "Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 381-396. <http://eudml.org/doc/249419>.

@article{Wallisser2005,
abstract = {Let $Q$ be a nonconstant polynomial with integer coefficients and without zeros at the non–negative integers. Essentially with the method of Hermite, a new proof is given on linear independence of values at rational points of the function\begin\{align*\} G(x) = \sum \limits \_\{n=0\}^\infty ~ \frac\{x^n\}\{Q(1) Q(2)\cdots Q(n)\}. \end\{align*\}},
affiliation = {Mathematisches Institut der Universität Freiburg Eckerstr.1 79104 Freiburg, Deutschland},
author = {Wallisser, Rolf},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {381-396},
publisher = {Université Bordeaux 1},
title = {Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson},
url = {http://eudml.org/doc/249419},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Wallisser, Rolf
TI - Linear independence of values of a certain generalisation of the exponential function – a new proof of a theorem of Carlson
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 381
EP - 396
AB - Let $Q$ be a nonconstant polynomial with integer coefficients and without zeros at the non–negative integers. Essentially with the method of Hermite, a new proof is given on linear independence of values at rational points of the function\begin{align*} G(x) = \sum \limits _{n=0}^\infty ~ \frac{x^n}{Q(1) Q(2)\cdots Q(n)}. \end{align*}
LA - eng
UR - http://eudml.org/doc/249419
ER -

References

top
  1. P. Bundschuh, R. Wallisser, Maße für die lineare Unabhängigkeit von Werten ganz transzendenter Lösungen gewisser Funktionalgleichungen I Bd. 69 (1999) II Bd. 73 (2003). Abh. Math Sem. Univ. Hamburg. Zbl1041.11050
  2. F. Carlson, Sur une propriété arithmétique de quelques fonctions entières. Arkiv för Mathematik, Astronomi och Fysik. Bd 25A. N: 07 (1935). Zbl0011.39202
  3. R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der höheren Kongruenzen, Abh. Akad. Wiss. Göttingen 23 (1878), 3–37. 
  4. N.I. Fel’dman, Yu.V. Nesterenko, Transcendental Numbers, Number Theory IV. Encycl. of Math. Sc. 44 (1998), Springer. Zbl0885.11004MR1603608
  5. I. Gerst, J. Brillhart, On the prime divisors of polynomials. Amer. Math. Monthly 78 (1971). Zbl0214.30604MR279071
  6. H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, 2nd ed., Physica, Würzburg, 1965. 
  7. D.Hilbert, Über die Transcendenz der Zahlen e und π . Math. Ann. 43 (1893), 216–219. 
  8. A. Hurwitz, Beweis der Transzendenz der Zahl e . Math. Ann. 43 (1893), 220–221. MR1510809
  9. T. Nagell, Généralisation d’un théorème de Tchebycheff. Journ. de Math. ( 8 e serie), tome IV (1921). Zbl48.1173.01
  10. O. Perron, Irrationalzahlen. Chelsea, New York, (1951). Zbl0029.20303
  11. I. Schur, Über die Existenz unendlich vieler Primzahlen in einigen speziellen arithmetischen Progressionen. S.–B. Berlin. Math. Ges. 11 (1912), 40–50. Zbl43.0261.02
  12. Th. Skolem, Some theorems on irrationality and linear independence. Skand. Mat. Kongr. 11, Trondheim 1949, 77–98. Zbl0048.03304MR53981

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.