On the existence of Minkowski units in totally real cyclic fields

František Marko[1]

  • [1] Pennsylvania State University 76 University Drive Hazleton, PA 18202, USA and Mathematical Institute Slovak Academy of Sciences Štefánikova 49 814 38 Bratislava, Slovakia

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 195-206
  • ISSN: 1246-7405

Abstract

top
Let K be a totally real cyclic number field of degree n that is the product of two distinct primes and such that the class number of the n -th cyclotomic field equals 1. We derive certain necessary and sufficient conditions for the existence of a Minkowski unit for K .

How to cite

top

Marko, František. "On the existence of Minkowski units in totally real cyclic fields." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 195-206. <http://eudml.org/doc/249434>.

@article{Marko2005,
abstract = {Let $K$ be a totally real cyclic number field of degree $n$ that is the product of two distinct primes and such that the class number of the $n$-th cyclotomic field equals 1. We derive certain necessary and sufficient conditions for the existence of a Minkowski unit for $K$.},
affiliation = {Pennsylvania State University 76 University Drive Hazleton, PA 18202, USA and Mathematical Institute Slovak Academy of Sciences Štefánikova 49 814 38 Bratislava, Slovakia},
author = {Marko, František},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {195-206},
publisher = {Université Bordeaux 1},
title = {On the existence of Minkowski units in totally real cyclic fields},
url = {http://eudml.org/doc/249434},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Marko, František
TI - On the existence of Minkowski units in totally real cyclic fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 195
EP - 206
AB - Let $K$ be a totally real cyclic number field of degree $n$ that is the product of two distinct primes and such that the class number of the $n$-th cyclotomic field equals 1. We derive certain necessary and sufficient conditions for the existence of a Minkowski unit for $K$.
LA - eng
UR - http://eudml.org/doc/249434
ER -

References

top
  1. L. Bouvier, J. PayanModules sur certains anneaux de Dedekind. J. Reine Angew. Math. 274/275 (1975), 278–286. Zbl0309.12006MR374084
  2. R. KučeraOn bases of the Stickelberger ideal and of the group of circular units of a cyclotomic field. J. Number Theory 40 (1992), 284–316. Zbl0744.11052MR1154041
  3. F. MarkoOn the existence of p -units and Minkowski units in totally real cyclic fields. Abh. Math. Sem. Univ. Hamburg 66 (1996), 89–111. Zbl0869.11087MR1418221
  4. N. MoserUnités et nombre de classes d’une extension Galoisienne diédrale de . Abh. Math. Sem. Univ. Hamburg 48 (1979), 54–75. Zbl0387.12005MR537446

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.