On the existence of Minkowski units in totally real cyclic fields
- [1] Pennsylvania State University 76 University Drive Hazleton, PA 18202, USA and Mathematical Institute Slovak Academy of Sciences Štefánikova 49 814 38 Bratislava, Slovakia
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 195-206
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMarko, František. "On the existence of Minkowski units in totally real cyclic fields." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 195-206. <http://eudml.org/doc/249434>.
@article{Marko2005,
abstract = {Let $K$ be a totally real cyclic number field of degree $n$ that is the product of two distinct primes and such that the class number of the $n$-th cyclotomic field equals 1. We derive certain necessary and sufficient conditions for the existence of a Minkowski unit for $K$.},
affiliation = {Pennsylvania State University 76 University Drive Hazleton, PA 18202, USA and Mathematical Institute Slovak Academy of Sciences Štefánikova 49 814 38 Bratislava, Slovakia},
author = {Marko, František},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {195-206},
publisher = {Université Bordeaux 1},
title = {On the existence of Minkowski units in totally real cyclic fields},
url = {http://eudml.org/doc/249434},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Marko, František
TI - On the existence of Minkowski units in totally real cyclic fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 195
EP - 206
AB - Let $K$ be a totally real cyclic number field of degree $n$ that is the product of two distinct primes and such that the class number of the $n$-th cyclotomic field equals 1. We derive certain necessary and sufficient conditions for the existence of a Minkowski unit for $K$.
LA - eng
UR - http://eudml.org/doc/249434
ER -
References
top- L. Bouvier, J. PayanModules sur certains anneaux de Dedekind. J. Reine Angew. Math. 274/275 (1975), 278–286. Zbl0309.12006MR374084
- R. KučeraOn bases of the Stickelberger ideal and of the group of circular units of a cyclotomic field. J. Number Theory 40 (1992), 284–316. Zbl0744.11052MR1154041
- F. MarkoOn the existence of -units and Minkowski units in totally real cyclic fields. Abh. Math. Sem. Univ. Hamburg 66 (1996), 89–111. Zbl0869.11087MR1418221
- N. MoserUnités et nombre de classes d’une extension Galoisienne diédrale de . Abh. Math. Sem. Univ. Hamburg 48 (1979), 54–75. Zbl0387.12005MR537446
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.