On coefficient valuations of Eisenstein polynomials
Matthias Künzer[1]; Eduard Wirsing[2]
- [1] Universität Ulm Abt. Reine Mathematik D-89069 Ulm, Allemagne
- [2] Universität Ulm Fak. f. Mathematik D-89069 Ulm, Allemagne
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 3, page 801-823
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKünzer, Matthias, and Wirsing, Eduard. "On coefficient valuations of Eisenstein polynomials." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 801-823. <http://eudml.org/doc/249444>.
@article{Künzer2005,
abstract = {Let $p\ge 3$ be a prime, let $n > m\ge 1$. Let $\pi _n$ be the norm of $\zeta _\{p^n\} - 1$ under $C_\{p-1\}$, so that $\mathbb\{Z\}_\{(p)\}[\pi _n]|\mathbb\{Z\}_\{(p)\}$ is a purely ramified extension of discrete valuation rings of degree $p^\{n-1\}$. The minimal polynomial of $\pi _n$ over $\mathbb\{Q\}(\pi _m)$ is an Eisenstein polynomial; we give lower bounds for its coefficient valuations at $\pi _m$. The function field analogue, as introduced by Carlitz and Hayes, is studied as well.},
affiliation = {Universität Ulm Abt. Reine Mathematik D-89069 Ulm, Allemagne; Universität Ulm Fak. f. Mathematik D-89069 Ulm, Allemagne},
author = {Künzer, Matthias, Wirsing, Eduard},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {801-823},
publisher = {Université Bordeaux 1},
title = {On coefficient valuations of Eisenstein polynomials},
url = {http://eudml.org/doc/249444},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Künzer, Matthias
AU - Wirsing, Eduard
TI - On coefficient valuations of Eisenstein polynomials
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 801
EP - 823
AB - Let $p\ge 3$ be a prime, let $n > m\ge 1$. Let $\pi _n$ be the norm of $\zeta _{p^n} - 1$ under $C_{p-1}$, so that $\mathbb{Z}_{(p)}[\pi _n]|\mathbb{Z}_{(p)}$ is a purely ramified extension of discrete valuation rings of degree $p^{n-1}$. The minimal polynomial of $\pi _n$ over $\mathbb{Q}(\pi _m)$ is an Eisenstein polynomial; we give lower bounds for its coefficient valuations at $\pi _m$. The function field analogue, as introduced by Carlitz and Hayes, is studied as well.
LA - eng
UR - http://eudml.org/doc/249444
ER -
References
top- L. Carlitz,A class of polynomials. Trans. Am. Math. Soc. 43 (2) (1938), 167–182. Zbl0018.19806MR1501937
- R. Dvornicich, U. Zannier,Sums of roots of unity vanishing modulo a prime. Arch. Math. 79 (2002), 104–108. Zbl1007.11062MR1925376
- D. Goss,The arithmetic of function fields. II. The “cyclotomic” theory. J. Alg. 81 (1) (1983), 107–149. Zbl0516.12010MR696130
- D. Goss,Basic structures of function field arithmetic. Springer, 1996. Zbl0892.11021MR1423131
- D. R. Hayes,Explicit class field theory for rational function fields. Trans. Am. Math. Soc. 189 (2) (1974), 77–91. Zbl0292.12018MR330106
- T. Y. Lam, K. H. Leung,On Vanishing Sums of Roots of Unity. J. Alg. 224 (2000), 91–109. Zbl1099.11510MR1736695
- J. Neukirch,Algebraische Zahlentheorie. Springer, 1992. Zbl0747.11001
- M. Rosen,Number Theory in Function Fields. Springer GTM 210, 2000. Zbl1043.11079MR1876657
- J. P. Serre,Corps Locaux. Hermann, 1968. Zbl0137.02601MR354618
- H. Weber, M. Künzer,Some additive galois cohomology rings. Arxiv math.NT/0102048, to appear in Comm. Alg., 2004. Zbl1160.11359MR2188320
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.