On coefficient valuations of Eisenstein polynomials

Matthias Künzer[1]; Eduard Wirsing[2]

  • [1] Universität Ulm Abt. Reine Mathematik D-89069 Ulm, Allemagne
  • [2] Universität Ulm Fak. f. Mathematik D-89069 Ulm, Allemagne

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 3, page 801-823
  • ISSN: 1246-7405

Abstract

top
Let p 3 be a prime, let n > m 1 . Let π n be the norm of ζ p n - 1 under C p - 1 , so that ( p ) [ π n ] | ( p ) is a purely ramified extension of discrete valuation rings of degree p n - 1 . The minimal polynomial of π n over ( π m ) is an Eisenstein polynomial; we give lower bounds for its coefficient valuations at π m . The function field analogue, as introduced by Carlitz and Hayes, is studied as well.

How to cite

top

Künzer, Matthias, and Wirsing, Eduard. "On coefficient valuations of Eisenstein polynomials." Journal de Théorie des Nombres de Bordeaux 17.3 (2005): 801-823. <http://eudml.org/doc/249444>.

@article{Künzer2005,
abstract = {Let $p\ge 3$ be a prime, let $n &gt; m\ge 1$. Let $\pi _n$ be the norm of $\zeta _\{p^n\} - 1$ under $C_\{p-1\}$, so that $\mathbb\{Z\}_\{(p)\}[\pi _n]|\mathbb\{Z\}_\{(p)\}$ is a purely ramified extension of discrete valuation rings of degree $p^\{n-1\}$. The minimal polynomial of $\pi _n$ over $\mathbb\{Q\}(\pi _m)$ is an Eisenstein polynomial; we give lower bounds for its coefficient valuations at $\pi _m$. The function field analogue, as introduced by Carlitz and Hayes, is studied as well.},
affiliation = {Universität Ulm Abt. Reine Mathematik D-89069 Ulm, Allemagne; Universität Ulm Fak. f. Mathematik D-89069 Ulm, Allemagne},
author = {Künzer, Matthias, Wirsing, Eduard},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {3},
pages = {801-823},
publisher = {Université Bordeaux 1},
title = {On coefficient valuations of Eisenstein polynomials},
url = {http://eudml.org/doc/249444},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Künzer, Matthias
AU - Wirsing, Eduard
TI - On coefficient valuations of Eisenstein polynomials
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 3
SP - 801
EP - 823
AB - Let $p\ge 3$ be a prime, let $n &gt; m\ge 1$. Let $\pi _n$ be the norm of $\zeta _{p^n} - 1$ under $C_{p-1}$, so that $\mathbb{Z}_{(p)}[\pi _n]|\mathbb{Z}_{(p)}$ is a purely ramified extension of discrete valuation rings of degree $p^{n-1}$. The minimal polynomial of $\pi _n$ over $\mathbb{Q}(\pi _m)$ is an Eisenstein polynomial; we give lower bounds for its coefficient valuations at $\pi _m$. The function field analogue, as introduced by Carlitz and Hayes, is studied as well.
LA - eng
UR - http://eudml.org/doc/249444
ER -

References

top
  1. L. Carlitz,A class of polynomials. Trans. Am. Math. Soc. 43 (2) (1938), 167–182. Zbl0018.19806MR1501937
  2. R. Dvornicich, U. Zannier,Sums of roots of unity vanishing modulo a prime. Arch. Math. 79 (2002), 104–108. Zbl1007.11062MR1925376
  3. D. Goss,The arithmetic of function fields. II. The “cyclotomic” theory. J. Alg. 81 (1) (1983), 107–149. Zbl0516.12010MR696130
  4. D. Goss,Basic structures of function field arithmetic. Springer, 1996. Zbl0892.11021MR1423131
  5. D. R. Hayes,Explicit class field theory for rational function fields. Trans. Am. Math. Soc. 189 (2) (1974), 77–91. Zbl0292.12018MR330106
  6. T. Y. Lam, K. H. Leung,On Vanishing Sums of Roots of Unity. J. Alg. 224 (2000), 91–109. Zbl1099.11510MR1736695
  7. J. Neukirch,Algebraische Zahlentheorie. Springer, 1992. Zbl0747.11001
  8. M. Rosen,Number Theory in Function Fields. Springer GTM 210, 2000. Zbl1043.11079MR1876657
  9. J. P. Serre,Corps Locaux. Hermann, 1968. Zbl0137.02601MR354618
  10. H. Weber, M. Künzer,Some additive galois cohomology rings. Arxiv math.NT/0102048, to appear in Comm. Alg., 2004. Zbl1160.11359MR2188320

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.