Complexity of Hartman sequences

Christian Steineder[1]; Reinhard Winkler[1]

  • [1] Technische Universität Wien Institut für Diskrete Mathematik und Geometrie Wiedner Hauptstraße 8-10 1040 Vienne, Autriche

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 347-357
  • ISSN: 1246-7405

Abstract

top
Let T : x x + g be an ergodic translation on the compact group C and M C a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence a : { 0 , 1 } defined by a ( k ) = 1 if T k ( 0 C ) M and a ( k ) = 0 otherwise, is called a Hartman sequence. This paper studies the growth rate of P a ( n ) , where P a ( n ) denotes the number of binary words of length n occurring in a . The growth rate is always subexponential and this result is optimal. If T is an ergodic translation x x + α ( α = ( α 1 , ... , α s ) ) on 𝕋 s and M is a box with side lengths ρ j not equal α j + for all j = 1 , ... , s , we show that lim n P a ( n ) / n s = 2 s j = 1 s ρ j s - 1 .

How to cite

top

Steineder, Christian, and Winkler, Reinhard. "Complexity of Hartman sequences." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 347-357. <http://eudml.org/doc/249465>.

@article{Steineder2005,
abstract = {Let $T: x \mapsto x+g$ be an ergodic translation on the compact group $C$ and $M \subseteq C$ a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence $\mathbf\{a\}: \mathbb\{Z\}\mapsto \lbrace 0,1\rbrace $ defined by $\mathbf\{a\}(k) =1$ if $T^k(0_C) \in M$ and $\mathbf\{a\}(k) =0$ otherwise, is called a Hartman sequence. This paper studies the growth rate of $P_\{\mathbf\{a\}\}(n)$, where $P_\{\mathbf\{a\}\}(n)$ denotes the number of binary words of length $n \in \mathbb\{N\}$ occurring in $\mathbf\{a\}$. The growth rate is always subexponential and this result is optimal. If $T$ is an ergodic translation $x \mapsto x + \alpha $$(\alpha =(\alpha _1,\ldots ,\alpha _s))$ on $\mathbb\{T\}^s$ and $M$ is a box with side lengths $\rho _j$ not equal $\alpha _j \mathbb\{Z\}+ \mathbb\{Z\}$ for all $j= 1,\ldots ,s$, we show that $\lim _n P_\{\mathbf\{a\}\}(n)/n^s = 2^s \prod _\{j=1\}^s \rho _j^\{s-1\}$.},
affiliation = {Technische Universität Wien Institut für Diskrete Mathematik und Geometrie Wiedner Hauptstraße 8-10 1040 Vienne, Autriche; Technische Universität Wien Institut für Diskrete Mathematik und Geometrie Wiedner Hauptstraße 8-10 1040 Vienne, Autriche},
author = {Steineder, Christian, Winkler, Reinhard},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {347-357},
publisher = {Université Bordeaux 1},
title = {Complexity of Hartman sequences},
url = {http://eudml.org/doc/249465},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Steineder, Christian
AU - Winkler, Reinhard
TI - Complexity of Hartman sequences
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 347
EP - 357
AB - Let $T: x \mapsto x+g$ be an ergodic translation on the compact group $C$ and $M \subseteq C$ a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence $\mathbf{a}: \mathbb{Z}\mapsto \lbrace 0,1\rbrace $ defined by $\mathbf{a}(k) =1$ if $T^k(0_C) \in M$ and $\mathbf{a}(k) =0$ otherwise, is called a Hartman sequence. This paper studies the growth rate of $P_{\mathbf{a}}(n)$, where $P_{\mathbf{a}}(n)$ denotes the number of binary words of length $n \in \mathbb{N}$ occurring in $\mathbf{a}$. The growth rate is always subexponential and this result is optimal. If $T$ is an ergodic translation $x \mapsto x + \alpha $$(\alpha =(\alpha _1,\ldots ,\alpha _s))$ on $\mathbb{T}^s$ and $M$ is a box with side lengths $\rho _j$ not equal $\alpha _j \mathbb{Z}+ \mathbb{Z}$ for all $j= 1,\ldots ,s$, we show that $\lim _n P_{\mathbf{a}}(n)/n^s = 2^s \prod _{j=1}^s \rho _j^{s-1}$.
LA - eng
UR - http://eudml.org/doc/249465
ER -

References

top
  1. P. Alessandri, V. Berthé, Three Distance Theorems and Combinatorics on Words. Enseig. Math. 44 (1998), 103–132. Zbl0997.11051MR1643286
  2. P. Arnoux, V. Berthé, S. Ferenci, S. Ito, C. Mauduit, M. Mori, J. Peyrière, A. Siegel, J.- I. Tamura, Z.- Y. Wen, Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics 1794, Springer Verlag Berlin, 2002. MR1970385
  3. V. Berthé, Sequences of low complexity: Automatic and Sturmian sequences. Topics in Symbolic Dynamics and Applications. Lond. Math. Soc, Lecture Notes 279, 1–28, Cambridge University Press, 2000. Zbl0976.11014MR1776754
  4. M. Denker, Ch. Grillenberger, K. Sigmund, Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics 527, Springer, Heidelberg, 1976. Zbl0328.28008MR457675
  5. S. Frisch, M. Pašteka, R. F. Tichy, R. Winkler, Finitely additive measures on groups and rings. Rend. Circolo Mat. di Palermo 48 Series II (1999), 323–340. Zbl0931.43001MR1692930
  6. G. A. Hedlund, M. Morse, Symbolic Dynamics I. Amer. J. Math. 60 (1938), 815–866. Zbl0019.33502MR1507944
  7. G. A. Hedlund, M. Morse, Symbolic Dynamics II. Amer. J. Math. 62 (1940), 1–42. Zbl0022.34003MR745
  8. E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I. Springer, Berlin—Göttingen—Heidelberg, 1963. Zbl0115.10603MR156915
  9. L. Kuipers, H. Niederreiter, Uniform distribution of sequences. Wiley, New York, 1974. Zbl0281.10001MR419394
  10. J. Schmeling, E. Szabó, R. Winkler, Hartman and Beatty bisequences. Algebraic Number Theory and Diophantine Analysis, 405–421, Walter de Gruyter, Berlin, 2000. Zbl0965.11035MR1770477
  11. P. Walters, An Introduction to Ergodic Theory. Grad. Texts in Math. Springer Verlag New York, 2000. Zbl0475.28009MR648108
  12. R. Winkler, Ergodic Group Rotations, Hartman Sets and Kronecker Sequences. Monatsh. Math. 135 (2002), 333–343. Zbl1008.37005MR1914810

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.