Complexity of Hartman sequences
Christian Steineder[1]; Reinhard Winkler[1]
- [1] Technische Universität Wien Institut für Diskrete Mathematik und Geometrie Wiedner Hauptstraße 8-10 1040 Vienne, Autriche
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 347-357
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSteineder, Christian, and Winkler, Reinhard. "Complexity of Hartman sequences." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 347-357. <http://eudml.org/doc/249465>.
@article{Steineder2005,
abstract = {Let $T: x \mapsto x+g$ be an ergodic translation on the compact group $C$ and $M \subseteq C$ a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence $\mathbf\{a\}: \mathbb\{Z\}\mapsto \lbrace 0,1\rbrace $ defined by $\mathbf\{a\}(k) =1$ if $T^k(0_C) \in M$ and $\mathbf\{a\}(k) =0$ otherwise, is called a Hartman sequence. This paper studies the growth rate of $P_\{\mathbf\{a\}\}(n)$, where $P_\{\mathbf\{a\}\}(n)$ denotes the number of binary words of length $n \in \mathbb\{N\}$ occurring in $\mathbf\{a\}$. The growth rate is always subexponential and this result is optimal. If $T$ is an ergodic translation $x \mapsto x + \alpha $$(\alpha =(\alpha _1,\ldots ,\alpha _s))$ on $\mathbb\{T\}^s$ and $M$ is a box with side lengths $\rho _j$ not equal $\alpha _j \mathbb\{Z\}+ \mathbb\{Z\}$ for all $j= 1,\ldots ,s$, we show that $\lim _n P_\{\mathbf\{a\}\}(n)/n^s = 2^s \prod _\{j=1\}^s \rho _j^\{s-1\}$.},
affiliation = {Technische Universität Wien Institut für Diskrete Mathematik und Geometrie Wiedner Hauptstraße 8-10 1040 Vienne, Autriche; Technische Universität Wien Institut für Diskrete Mathematik und Geometrie Wiedner Hauptstraße 8-10 1040 Vienne, Autriche},
author = {Steineder, Christian, Winkler, Reinhard},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {347-357},
publisher = {Université Bordeaux 1},
title = {Complexity of Hartman sequences},
url = {http://eudml.org/doc/249465},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Steineder, Christian
AU - Winkler, Reinhard
TI - Complexity of Hartman sequences
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 347
EP - 357
AB - Let $T: x \mapsto x+g$ be an ergodic translation on the compact group $C$ and $M \subseteq C$ a continuity set, i.e. a subset with topological boundary of Haar measure 0. An infinite binary sequence $\mathbf{a}: \mathbb{Z}\mapsto \lbrace 0,1\rbrace $ defined by $\mathbf{a}(k) =1$ if $T^k(0_C) \in M$ and $\mathbf{a}(k) =0$ otherwise, is called a Hartman sequence. This paper studies the growth rate of $P_{\mathbf{a}}(n)$, where $P_{\mathbf{a}}(n)$ denotes the number of binary words of length $n \in \mathbb{N}$ occurring in $\mathbf{a}$. The growth rate is always subexponential and this result is optimal. If $T$ is an ergodic translation $x \mapsto x + \alpha $$(\alpha =(\alpha _1,\ldots ,\alpha _s))$ on $\mathbb{T}^s$ and $M$ is a box with side lengths $\rho _j$ not equal $\alpha _j \mathbb{Z}+ \mathbb{Z}$ for all $j= 1,\ldots ,s$, we show that $\lim _n P_{\mathbf{a}}(n)/n^s = 2^s \prod _{j=1}^s \rho _j^{s-1}$.
LA - eng
UR - http://eudml.org/doc/249465
ER -
References
top- P. Alessandri, V. Berthé, Three Distance Theorems and Combinatorics on Words. Enseig. Math. 44 (1998), 103–132. Zbl0997.11051MR1643286
- P. Arnoux, V. Berthé, S. Ferenci, S. Ito, C. Mauduit, M. Mori, J. Peyrière, A. Siegel, J.- I. Tamura, Z.- Y. Wen, Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics 1794, Springer Verlag Berlin, 2002. MR1970385
- V. Berthé, Sequences of low complexity: Automatic and Sturmian sequences. Topics in Symbolic Dynamics and Applications. Lond. Math. Soc, Lecture Notes 279, 1–28, Cambridge University Press, 2000. Zbl0976.11014MR1776754
- M. Denker, Ch. Grillenberger, K. Sigmund, Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics 527, Springer, Heidelberg, 1976. Zbl0328.28008MR457675
- S. Frisch, M. Pašteka, R. F. Tichy, R. Winkler, Finitely additive measures on groups and rings. Rend. Circolo Mat. di Palermo 48 Series II (1999), 323–340. Zbl0931.43001MR1692930
- G. A. Hedlund, M. Morse, Symbolic Dynamics I. Amer. J. Math. 60 (1938), 815–866. Zbl0019.33502MR1507944
- G. A. Hedlund, M. Morse, Symbolic Dynamics II. Amer. J. Math. 62 (1940), 1–42. Zbl0022.34003MR745
- E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I. Springer, Berlin—Göttingen—Heidelberg, 1963. Zbl0115.10603MR156915
- L. Kuipers, H. Niederreiter, Uniform distribution of sequences. Wiley, New York, 1974. Zbl0281.10001MR419394
- J. Schmeling, E. Szabó, R. Winkler, Hartman and Beatty bisequences. Algebraic Number Theory and Diophantine Analysis, 405–421, Walter de Gruyter, Berlin, 2000. Zbl0965.11035MR1770477
- P. Walters, An Introduction to Ergodic Theory. Grad. Texts in Math. Springer Verlag New York, 2000. Zbl0475.28009MR648108
- R. Winkler, Ergodic Group Rotations, Hartman Sets and Kronecker Sequences. Monatsh. Math. 135 (2002), 333–343. Zbl1008.37005MR1914810
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.