Stability of hydrodynamic model for semiconductor

Massimiliano Daniele Rosini

Archivum Mathematicum (2005)

  • Volume: 041, Issue: 1, page 37-58
  • ISSN: 0044-8753

Abstract

top
In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.

How to cite

top

Rosini, Massimiliano Daniele. "Stability of hydrodynamic model for semiconductor." Archivum Mathematicum 041.1 (2005): 37-58. <http://eudml.org/doc/249496>.

@article{Rosini2005,
abstract = {In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.},
author = {Rosini, Massimiliano Daniele},
journal = {Archivum Mathematicum},
keywords = {transonic shock waves; stability; hydrodynamic models; semiconductors; transonic strong shock solutions; one space dimension; pseudo-local symmetrizer; paradifferential calculus},
language = {eng},
number = {1},
pages = {37-58},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Stability of hydrodynamic model for semiconductor},
url = {http://eudml.org/doc/249496},
volume = {041},
year = {2005},
}

TY - JOUR
AU - Rosini, Massimiliano Daniele
TI - Stability of hydrodynamic model for semiconductor
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 1
SP - 37
EP - 58
AB - In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.
LA - eng
KW - transonic shock waves; stability; hydrodynamic models; semiconductors; transonic strong shock solutions; one space dimension; pseudo-local symmetrizer; paradifferential calculus
UR - http://eudml.org/doc/249496
ER -

References

top
  1. Asher U. M., Markowich P. A., Pietra P., Schmeiser C., A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Appl. Sci. 1 (1991), 347–376. (1991) MR1127572
  2. Bony J. M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partialles non linéaires, Ann. Sci. Ec. Norm. Sup. Paris 14 (1981), 209–246. (1981) MR0631751
  3. Bony J. M., Analyse microlocale des équations aux dérivées partialles non linéaries, Microlocal Analysis and Applications, Montecatini Terme, Lecture Notes in Mathematics 1495 (1989), 1–45. (1989) MR2003416
  4. Chen Z., Harumi H., Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species, J. Differential Equations 166 no. 1 (2000), 1–32. Zbl0974.35123MR1779253
  5. Coifman R. R., Meyer Y., Au delá des opérateurs pseudo-différentiels, Astérisque 57, 1978, 185 pp. (1978) Zbl0483.35082MR0518170
  6. Chazarain J., Piriou A., Introduction to the theory of linear partial differential equations, Studies in Mathematics and Its Applications, Vol. 14, Amsterdam-New York-Oxford, 1982. (1982) Zbl0487.35002MR0678605
  7. Godlewski E., Raviart P. A., Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences 118, New York-Springer 1996. (1996) Zbl0860.65075MR1410987
  8. Kreiss H. O., Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. XXIII (1970), 277–288. (1970) Zbl0215.16801MR0437941
  9. Li H., Markowich P. A., Mei M., Asymptotic behavior of solutions of the hydrodynamic model of semiconductors, Proc. Royal Soc. Edinburgh 132A (2000), 359–378. MR1899826
  10. Majda A., Smooth solutions for the equations of compressible on incompressible fluid flow, Lecture Notes in Math., Springer-Verlag 1047 (1982), 75–124. (1982) MR0741195
  11. Majda A., The stability of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 275 (1983), 95p. (1983) Zbl0506.76075
  12. Majda A., The existence of multidimensional shocks, Mem. Amer. Math. Soc. 281 (1983), 92p. (1983) MR0699241
  13. Majda A., Compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sci., Springer-Verlag, New York 53 (1984), 159p. (1984) Zbl0537.76001MR0748308
  14. Marcati P., Mei M., (to appear), Asymptotic convergence to steady-state solutions for solutions of the initial boundary problem to a hydrodynamic model for semiconductors, to appear. 
  15. Marcati P., Natalini R., Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129, no.2 (1995), 129–145. (1995) Zbl0829.35128MR1328473
  16. Marcati P., Natalini R., (1995), Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem, Proc. Roy. Soc. Edinburgh Sect. A 125, no.1 (1995), 115–131. (1995) MR1318626
  17. Markowich P. A., Kinetic models for semiconductors, In “Nonequilibrium problems in many-particle systems" (Montecatini, 1992), Lecture Notes in Math., Springer, Berlin 1551 (1993), 87–111. (1992) MR1296259
  18. Métivier G., (2001), Stability of multidimensional shocks, Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, 47 (2001), 25–103. MR1842775
  19. Meyer Y., Remarques sur un théorème de J. M. Bony, Rend. Circ. Mat. Palermo, Suppl., Serie II. 1 (1981), 1–20. (1981) Zbl0473.35021MR0639462

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.