Stability of hydrodynamic model for semiconductor
Archivum Mathematicum (2005)
- Volume: 041, Issue: 1, page 37-58
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRosini, Massimiliano Daniele. "Stability of hydrodynamic model for semiconductor." Archivum Mathematicum 041.1 (2005): 37-58. <http://eudml.org/doc/249496>.
@article{Rosini2005,
abstract = {In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.},
author = {Rosini, Massimiliano Daniele},
journal = {Archivum Mathematicum},
keywords = {transonic shock waves; stability; hydrodynamic models; semiconductors; transonic strong shock solutions; one space dimension; pseudo-local symmetrizer; paradifferential calculus},
language = {eng},
number = {1},
pages = {37-58},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Stability of hydrodynamic model for semiconductor},
url = {http://eudml.org/doc/249496},
volume = {041},
year = {2005},
}
TY - JOUR
AU - Rosini, Massimiliano Daniele
TI - Stability of hydrodynamic model for semiconductor
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 1
SP - 37
EP - 58
AB - In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.
LA - eng
KW - transonic shock waves; stability; hydrodynamic models; semiconductors; transonic strong shock solutions; one space dimension; pseudo-local symmetrizer; paradifferential calculus
UR - http://eudml.org/doc/249496
ER -
References
top- Asher U. M., Markowich P. A., Pietra P., Schmeiser C., A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Appl. Sci. 1 (1991), 347–376. (1991) MR1127572
- Bony J. M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partialles non linéaires, Ann. Sci. Ec. Norm. Sup. Paris 14 (1981), 209–246. (1981) MR0631751
- Bony J. M., Analyse microlocale des équations aux dérivées partialles non linéaries, Microlocal Analysis and Applications, Montecatini Terme, Lecture Notes in Mathematics 1495 (1989), 1–45. (1989) MR2003416
- Chen Z., Harumi H., Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species, J. Differential Equations 166 no. 1 (2000), 1–32. Zbl0974.35123MR1779253
- Coifman R. R., Meyer Y., Au delá des opérateurs pseudo-différentiels, Astérisque 57, 1978, 185 pp. (1978) Zbl0483.35082MR0518170
- Chazarain J., Piriou A., Introduction to the theory of linear partial differential equations, Studies in Mathematics and Its Applications, Vol. 14, Amsterdam-New York-Oxford, 1982. (1982) Zbl0487.35002MR0678605
- Godlewski E., Raviart P. A., Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences 118, New York-Springer 1996. (1996) Zbl0860.65075MR1410987
- Kreiss H. O., Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. XXIII (1970), 277–288. (1970) Zbl0215.16801MR0437941
- Li H., Markowich P. A., Mei M., Asymptotic behavior of solutions of the hydrodynamic model of semiconductors, Proc. Royal Soc. Edinburgh 132A (2000), 359–378. MR1899826
- Majda A., Smooth solutions for the equations of compressible on incompressible fluid flow, Lecture Notes in Math., Springer-Verlag 1047 (1982), 75–124. (1982) MR0741195
- Majda A., The stability of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 275 (1983), 95p. (1983) Zbl0506.76075
- Majda A., The existence of multidimensional shocks, Mem. Amer. Math. Soc. 281 (1983), 92p. (1983) MR0699241
- Majda A., Compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sci., Springer-Verlag, New York 53 (1984), 159p. (1984) Zbl0537.76001MR0748308
- Marcati P., Mei M., (to appear), Asymptotic convergence to steady-state solutions for solutions of the initial boundary problem to a hydrodynamic model for semiconductors, to appear.
- Marcati P., Natalini R., Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129, no.2 (1995), 129–145. (1995) Zbl0829.35128MR1328473
- Marcati P., Natalini R., (1995), Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem, Proc. Roy. Soc. Edinburgh Sect. A 125, no.1 (1995), 115–131. (1995) MR1318626
- Markowich P. A., Kinetic models for semiconductors, In “Nonequilibrium problems in many-particle systems" (Montecatini, 1992), Lecture Notes in Math., Springer, Berlin 1551 (1993), 87–111. (1992) MR1296259
- Métivier G., (2001), Stability of multidimensional shocks, Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, 47 (2001), 25–103. MR1842775
- Meyer Y., Remarques sur un théorème de J. M. Bony, Rend. Circ. Mat. Palermo, Suppl., Serie II. 1 (1981), 1–20. (1981) Zbl0473.35021MR0639462
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.