Fixed points theorems of non-expanding fuzzy multifunctions

Abdelkader Stouti

Archivum Mathematicum (2005)

  • Volume: 041, Issue: 1, page 117-122
  • ISSN: 0044-8753

Abstract

top
We prove the existence of a fixed point of non-expanding fuzzy multifunctions in α -fuzzy preordered sets. Furthermore, we establish the existence of least and minimal fixed points of non-expanding fuzzy multifunctions in α -fuzzy ordered sets.

How to cite

top

Stouti, Abdelkader. "Fixed points theorems of non-expanding fuzzy multifunctions." Archivum Mathematicum 041.1 (2005): 117-122. <http://eudml.org/doc/249501>.

@article{Stouti2005,
abstract = {We prove the existence of a fixed point of non-expanding fuzzy multifunctions in $\alpha $-fuzzy preordered sets. Furthermore, we establish the existence of least and minimal fixed points of non-expanding fuzzy multifunctions in $\alpha $-fuzzy ordered sets.},
author = {Stouti, Abdelkader},
journal = {Archivum Mathematicum},
keywords = {fuzzy set; $\alpha $-fuzzy preorder relation; $\alpha $-fuzzy order relation; non-expanding fuzzy multifunction; fixed point; fuzzy set; -fuzzy preorder relation; -fuzzy order relation},
language = {eng},
number = {1},
pages = {117-122},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Fixed points theorems of non-expanding fuzzy multifunctions},
url = {http://eudml.org/doc/249501},
volume = {041},
year = {2005},
}

TY - JOUR
AU - Stouti, Abdelkader
TI - Fixed points theorems of non-expanding fuzzy multifunctions
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 1
SP - 117
EP - 122
AB - We prove the existence of a fixed point of non-expanding fuzzy multifunctions in $\alpha $-fuzzy preordered sets. Furthermore, we establish the existence of least and minimal fixed points of non-expanding fuzzy multifunctions in $\alpha $-fuzzy ordered sets.
LA - eng
KW - fuzzy set; $\alpha $-fuzzy preorder relation; $\alpha $-fuzzy order relation; non-expanding fuzzy multifunction; fixed point; fuzzy set; -fuzzy preorder relation; -fuzzy order relation
UR - http://eudml.org/doc/249501
ER -

References

top
  1. Beg I., Islam M., Fuzzy order linear spaces, J. Fuzzy Math. 3 (3) (1995), 659–670. (1995) MR1353830
  2. Beg I., Fixed points of fuzzy multivalued mappings with values in fuzzy ordered sets, J. Fuzzy Math. 6 (1) (1998), 127–131. (1998) Zbl0909.47055MR1609883
  3. Beg I., 0n fuzzy Zorn’s lemma, Fuzzy Sets and Systems 101 (1999), 181–183. (1999) MR1658920
  4. Beg I., Fixed points of expansive mappings on fuzzy preordered sets, J. Fuzzy Math., 7(2)(1999), 397-400. (1999) Zbl0941.54037MR1697747
  5. Beg I., Fixed points of fuzzy monotone maps, Arch. Math. (Brno) 35 (1999), 141–144. (1999) Zbl1047.03044MR1711740
  6. Bose B. K., Sahani D., Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems 21 (1987), 53–58. (1987) Zbl0609.54032MR0868355
  7. Billot A., Economic theory of fuzzy equilibria, Lecture Notes in Econom. and Math. Systems 373 Springer-Verlag, Berlin 1992. (1992) Zbl0758.90008MR1227785
  8. Fang J. X., On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992), 107–113. (1992) Zbl0766.54045MR1153595
  9. Hadzic O., Fixed point theorems for multivalued mapping in some classes of fuzzy metric spaces, Fuzzy Sets and Systems 29 (1989), 115–125. (1989) MR0976292
  10. Heilpern S., Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83 (1981), 566–569. (1981) MR0641351
  11. Kaleva O., A note on fixed points for fuzzy mappings, Fuzzy Sets and Systems 15 (1985), 99–100. (1985) Zbl0564.47028MR0785284
  12. Negoita C. V., Ralescu D. A., Applications of fuzzy sets to systems analysis, Fuzzy Sets and Systems 1 (1978), 155–167. (1978) 
  13. Stouti A., Fixed point theory for fuzzy monotone multifunctions, J. Fuzzy Math. 11 (2) (2003), 455–466. Zbl1053.54014MR1982177
  14. Stouti A., Fixed points of fuzzy monotone multifunctions, Arch. Math. (Brno) 39 (2003), 209–212. Zbl1108.03312MR2010722
  15. Stouti A., A fuzzy version of Tarski’s fixpoint Theorem, Arch. Math. (Brno) 40 (2004), 273–279. Zbl1108.06008MR2107022
  16. Stouti A., Fixed points of expanding fuzzy multifunctions, J. Fuzzy Math. 12(4) (2004), 1542–1546. Zbl1079.54022MR2125751
  17. Venugopalan P., Fuzzy ordered sets, Fuzzy Sets and Systems 46 (1992), 221–226. (1992) Zbl0765.06008MR1167316
  18. Zadeh L. A., Fuzzy sets, Information and Control 8 (1965), 338–353. (1965) Zbl0139.24606MR0219427
  19. Zadeh L. A., Similarity and fuzzy ordering, Information Sciences 3 (1971), 177–200. (1971) MR0297650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.