On a subclass of α -uniform convex functions

Mugur Acu

Archivum Mathematicum (2005)

  • Volume: 041, Issue: 2, page 175-180
  • ISSN: 0044-8753

Abstract

top
In this paper we define a subclass of α -uniform convex functions by using the S’al’agean differential operator and we obtain some properties of this class.

How to cite

top

Acu, Mugur. "On a subclass of $\alpha $-uniform convex functions." Archivum Mathematicum 041.2 (2005): 175-180. <http://eudml.org/doc/249514>.

@article{Acu2005,
abstract = {In this paper we define a subclass of $\alpha $-uniform convex functions by using the S’al’agean differential operator and we obtain some properties of this class.},
author = {Acu, Mugur},
journal = {Archivum Mathematicum},
keywords = {Libera type integral operator; $\alpha $-uniform convex functions; S’al’agean differential operator; Sălăgean differential operator},
language = {eng},
number = {2},
pages = {175-180},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On a subclass of $\alpha $-uniform convex functions},
url = {http://eudml.org/doc/249514},
volume = {041},
year = {2005},
}

TY - JOUR
AU - Acu, Mugur
TI - On a subclass of $\alpha $-uniform convex functions
JO - Archivum Mathematicum
PY - 2005
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 041
IS - 2
SP - 175
EP - 180
AB - In this paper we define a subclass of $\alpha $-uniform convex functions by using the S’al’agean differential operator and we obtain some properties of this class.
LA - eng
KW - Libera type integral operator; $\alpha $-uniform convex functions; S’al’agean differential operator; Sălăgean differential operator
UR - http://eudml.org/doc/249514
ER -

References

top
  1. Acu M., Blezu D., A preserving property of a Libera type operator, Filomat 14 (2000), 13–18. Zbl1035.30006MR1953990
  2. Duren P. L., Univalent Functions, Springer-Verlag, 1984. (1984) Zbl0563.30014MR0708494
  3. Goodman A. W., On uniformly convex function, Ann. Polon. Math. LVIII (1991), 86–92. (1991) MR1145573
  4. Magdaş I., [unknown], Doctoral thesis, University “Babes-Bolyai" Cluj-Napoca, 1999. (1999) Zbl1027.30029
  5. Miller S. S., Mocanu P. T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157–171. (1981) Zbl0439.30015MR0616267
  6. Miller S. S., Mocanu P. T., Univalent solution of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297–308. (1985) MR0780494
  7. Miller S. S., Mocanu P. T., On some classes of first order differential subordinations, Michigan Math. J. 32 (1985), 185–195. (1985) Zbl0575.30019MR0783572
  8. Mocanu P. T., Une propriété de convexité généralisée dans la theorie de la representation conforme, Mathematica (Cluj) 11(34) (1969), 127–133. (1969) Zbl0195.36401MR0273000
  9. Ronning F., On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 45(14) (1991), 117–122. (1991) MR1322145
  10. Sălăgean, Gr., On some classes of univalent functions, Seminar of geometric function theory, Cluj-Napoca, 1983 (1983) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.