On the range of a closed operator in an -space of vector-valued functions
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 2, page 349-367
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSato, Ryotaro. "On the range of a closed operator in an $L_1$-space of vector-valued functions." Commentationes Mathematicae Universitatis Carolinae 46.2 (2005): 349-367. <http://eudml.org/doc/249534>.
@article{Sato2005,
abstract = {Let $X$ be a reflexive Banach space and $A$ be a closed operator in an $L_1$-space of $X$-valued functions. Then we characterize the range $R(A)$ of $A$ as follows. Let $0\ne \lambda _\{n\}\in \rho (A)$ for all $1\le n < \infty $, where $\rho (A)$ denotes the resolvent set of $A$, and assume that $\lim _\{n\rightarrow \infty \} \lambda _\{n\}=0$ and $\sup _\{n\ge 1\} \Vert \lambda _\{n\}(\lambda _\{n\}-A)^\{-1\}\Vert < \infty $. Furthermore, assume that there exists $\lambda _\{\infty \}\in \rho (A)$ such that $\Vert \lambda _\{\infty \}(\lambda _\{\infty \}-A)^\{-1\}\Vert \le 1$. Then $f\in R(A)$ is equivalent to $\sup _\{n\ge 1\} \Vert (\lambda _\{n\}-A)^\{-1\}f\Vert _\{1\}<\infty $. This generalizes Shaw’s result for scalar-valued functions.},
author = {Sato, Ryotaro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {reflexive Banach space; $L_1$-space of vector-valued functions; closed operator; resolvent set; range and domain; linear contraction; $C_0$-semigroup; strongly continuous cosine family of operators; reflexive Banach space; -space of vector-valued functions; closed operator; resolvent set},
language = {eng},
number = {2},
pages = {349-367},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the range of a closed operator in an $L_1$-space of vector-valued functions},
url = {http://eudml.org/doc/249534},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Sato, Ryotaro
TI - On the range of a closed operator in an $L_1$-space of vector-valued functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 2
SP - 349
EP - 367
AB - Let $X$ be a reflexive Banach space and $A$ be a closed operator in an $L_1$-space of $X$-valued functions. Then we characterize the range $R(A)$ of $A$ as follows. Let $0\ne \lambda _{n}\in \rho (A)$ for all $1\le n < \infty $, where $\rho (A)$ denotes the resolvent set of $A$, and assume that $\lim _{n\rightarrow \infty } \lambda _{n}=0$ and $\sup _{n\ge 1} \Vert \lambda _{n}(\lambda _{n}-A)^{-1}\Vert < \infty $. Furthermore, assume that there exists $\lambda _{\infty }\in \rho (A)$ such that $\Vert \lambda _{\infty }(\lambda _{\infty }-A)^{-1}\Vert \le 1$. Then $f\in R(A)$ is equivalent to $\sup _{n\ge 1} \Vert (\lambda _{n}-A)^{-1}f\Vert _{1}<\infty $. This generalizes Shaw’s result for scalar-valued functions.
LA - eng
KW - reflexive Banach space; $L_1$-space of vector-valued functions; closed operator; resolvent set; range and domain; linear contraction; $C_0$-semigroup; strongly continuous cosine family of operators; reflexive Banach space; -space of vector-valued functions; closed operator; resolvent set
UR - http://eudml.org/doc/249534
ER -
References
top- Assani I., A note on the equation in , Illinois J. Math. 43 (1999), 540-541. (1999) MR1700608
- Browder F.E., On the iteration of transformations in non-compact minimal dynamical systems, Proc. Amer. Math. Soc. 9 (1958), 773-780. (1958) Zbl0092.12602MR0096975
- Diestel J., Uhr J.J., Jr., Vector Measures, Amer. Math. Soc., Providence, 1977. MR0453964
- Fonf V., Lin M., Rubinov A., On the uniform ergodic theorem in Banach spaces that do not contain duals, Studia Math. 121 (1996), 67-85. (1996) Zbl0861.47006MR1414895
- Gottschalk W.H., Hedlund G.A., Topological Dynamics, Amer. Math. Soc. Colloq. Publ. 36, Amer. Math. Soc., Providence, 1955. Zbl0067.15204MR0074810
- Krengel U., Lin M., On the range of the generator of a Markovian semigroup, Math. Z. 185 (1984), 553-565. (1984) Zbl0525.60080MR0733775
- Li Y.-C., Sato R., Shaw S.-Y., Boundedness and growth orders of means of discrete and continuous semigroups of operators, preprint. Zbl1151.47048MR2410881
- Lin M., Sine R., Ergodic theory and the functional equation , J. Operator Theory 10 (1983), 153-166. (1983) Zbl0553.47006MR0715565
- Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. Zbl0516.47023MR0710486
- Sato R., Solvability of the functional equation for vector-valued functions, Colloq. Math. 99 (2004), 253-265. (2004) Zbl1072.47010MR2079330
- Shaw S.-Y., On the range of a closed operator, J. Operator Theory 22 (1989), 157-163. (1989) Zbl0703.47003MR1026079
- Shaw S.-Y., Li Y.-C., On solvability of , approximate solutions, and uniform ergodicity, Rend. Circ. Mat. Palermo (2) Suppl. 2002, no. 68, part II, 805-819. Zbl1050.47013MR1975488
- Sova M., Cosine operator functions, Rozprawy Mat. 49 (1966), 1-47. (1966) Zbl0156.15404MR0193525
- Travis C.C., Webb G.F., Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32 (1978), 75-96. (1978) Zbl0388.34039MR0499581
- Zygmund A., Trigonometric Series, Vol. I, Cambridge University Press, Cambridge, 1959. Zbl1084.42003MR0107776
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.