Complete hypersurfaces with constant scalar curvature in a sphere

Ximin Liu; Hongxia Li

Commentationes Mathematicae Universitatis Carolinae (2005)

  • Volume: 46, Issue: 3, page 567-575
  • ISSN: 0010-2628

Abstract

top
In this paper, by using Cheng-Yau’s self-adjoint operator , we study the complete hypersurfaces in a sphere with constant scalar curvature.

How to cite

top

Liu, Ximin, and Li, Hongxia. "Complete hypersurfaces with constant scalar curvature in a sphere." Commentationes Mathematicae Universitatis Carolinae 46.3 (2005): 567-575. <http://eudml.org/doc/249544>.

@article{Liu2005,
abstract = {In this paper, by using Cheng-Yau’s self-adjoint operator $\square $, we study the complete hypersurfaces in a sphere with constant scalar curvature.},
author = {Liu, Ximin, Li, Hongxia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hypersurface; sphere; scalar curvature; scalar curvature},
language = {eng},
number = {3},
pages = {567-575},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Complete hypersurfaces with constant scalar curvature in a sphere},
url = {http://eudml.org/doc/249544},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Liu, Ximin
AU - Li, Hongxia
TI - Complete hypersurfaces with constant scalar curvature in a sphere
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 3
SP - 567
EP - 575
AB - In this paper, by using Cheng-Yau’s self-adjoint operator $\square $, we study the complete hypersurfaces in a sphere with constant scalar curvature.
LA - eng
KW - hypersurface; sphere; scalar curvature; scalar curvature
UR - http://eudml.org/doc/249544
ER -

References

top
  1. Alencar H., do Carmo M.P., Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120 (1994), 1223-1229. (1994) Zbl0802.53017MR1172943
  2. Cheng S.Y., Yau S.T., Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195-204. (1977) Zbl0349.53041MR0431043
  3. Hou Z.H., Hypersurfaces in sphere with constant mean curvature, Proc. Amer. Math. Soc. 125 (1997), 1193-1196. (1997) MR1363169
  4. Lawson H.B., Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 187-197. (1969) Zbl0174.24901MR0238229
  5. Li H., Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), 665-672. (1996) Zbl0864.53040MR1399710
  6. Nomizu K., Smyth B., A formula for Simon's type and hypersurfaces, J. Differential Geom. 3 (1969), 367-377. (1969) MR0266109
  7. Okumuru M., Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213. (1974) MR0353216
  8. Omori H., Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214. (1967) Zbl0154.21501MR0215259
  9. Simons J., Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105. (1968) Zbl0181.49702MR0233295
  10. Yau S.T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. (1975) Zbl0291.31002MR0431040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.