Bi-ideal-simple semirings
Václav Flaška; Tomáš Kepka; Jan Šaroch
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 3, page 391-397
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFlaška, Václav, Kepka, Tomáš, and Šaroch, Jan. "Bi-ideal-simple semirings." Commentationes Mathematicae Universitatis Carolinae 46.3 (2005): 391-397. <http://eudml.org/doc/249546>.
@article{Flaška2005,
abstract = {Commutative congruence-simple semirings were studied in [2] and [7] (but see also [1], [3]--[6]). The non-commutative case almost (see [8]) escaped notice so far. Whatever, every congruence-simple semiring is bi-ideal-simple and the aim of this very short note is to collect several pieces of information on these semirings.},
author = {Flaška, Václav, Kepka, Tomáš, Šaroch, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bi-ideal-simple; semiring; zeropotent; bi-ideal-simple semirings; zeropotent semirings; congruence-simple semirings; congruences},
language = {eng},
number = {3},
pages = {391-397},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Bi-ideal-simple semirings},
url = {http://eudml.org/doc/249546},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Flaška, Václav
AU - Kepka, Tomáš
AU - Šaroch, Jan
TI - Bi-ideal-simple semirings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 3
SP - 391
EP - 397
AB - Commutative congruence-simple semirings were studied in [2] and [7] (but see also [1], [3]--[6]). The non-commutative case almost (see [8]) escaped notice so far. Whatever, every congruence-simple semiring is bi-ideal-simple and the aim of this very short note is to collect several pieces of information on these semirings.
LA - eng
KW - bi-ideal-simple; semiring; zeropotent; bi-ideal-simple semirings; zeropotent semirings; congruence-simple semirings; congruences
UR - http://eudml.org/doc/249546
ER -
References
top- Eilhauer R., Zur Theorie der Halbkörper, I, Acta Math. Acad. Sci. Hungar. 19 (1968), 23-45. (1968) Zbl0183.04202MR0222120
- El Bashir R., Hurt J., Jančařík A., Kepka T., Simple commutative semirings, J. Algebra 236 (2001), 277-306. (2001) Zbl0976.16034MR1808355
- Golan J., The Theory of Semirings with Application in Math. and Theoretical Computer Science, Pitman Monographs and Surveys in Pure and Applied Mathematics 54 Longman, Harlow (1992). (1992) MR1163371
- Hebisch U., Weinert H.J., Halbringe. Algebraische Theorie und Anwendungen in der Informatik, Teubner Stuttgart (1993). (1993) Zbl0829.16035MR1311247
- Hutehins H.C., Weinert H.J., Homomorphisms and kernels of semifields, Period. Math. Hungar. 21 (1990), 113-152. (1990) MR1070951
- Koch H., Über Halbkörper, die in algebraischen Zahlkörpern enhalten sind, Acta Math. Acad. Sci. Hungar. 15 (1964), 439-444. (1964) MR0168609
- Mitchell S.S., Fenoglio P.B., Congruence-free commutative semirings, Semigroup Forum 37 (1988), 79-91. (1988) Zbl0636.16020MR0929445
- Monico C., On finite congruence-simple semirings, J. Algebra 271 (2004), 846-854. (2004) Zbl1041.16041MR2025553
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.