Cardinal invariants of universals
Gareth Fairey; Paul Gartside; Andrew Marsh
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 4, page 685-703
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFairey, Gareth, Gartside, Paul, and Marsh, Andrew. "Cardinal invariants of universals." Commentationes Mathematicae Universitatis Carolinae 46.4 (2005): 685-703. <http://eudml.org/doc/249556>.
@article{Fairey2005,
abstract = {We examine when a space $X$ has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the $\sigma $-weight of $X$ when $X$ is perfectly normal. We also show that if $Y$ parametrises a zero set universal for $X$ then $hL(X^n)\le hd(Y)$ for all $n\in \mathbb \{N\}$. We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space has a $K$-coarser topology. Examples are given including an $S$ space with zero set universal parametrised by an $L$ space (and vice versa).},
author = {Fairey, Gareth, Gartside, Paul, Marsh, Andrew},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {zero set universals; continuous function universals; $S$ and $L$ spaces; admissible topology; cardinal invariants; function spaces; zero set universals; continuous function universals; and spaces; admissible topology},
language = {eng},
number = {4},
pages = {685-703},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Cardinal invariants of universals},
url = {http://eudml.org/doc/249556},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Fairey, Gareth
AU - Gartside, Paul
AU - Marsh, Andrew
TI - Cardinal invariants of universals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 4
SP - 685
EP - 703
AB - We examine when a space $X$ has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the $\sigma $-weight of $X$ when $X$ is perfectly normal. We also show that if $Y$ parametrises a zero set universal for $X$ then $hL(X^n)\le hd(Y)$ for all $n\in \mathbb {N}$. We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space has a $K$-coarser topology. Examples are given including an $S$ space with zero set universal parametrised by an $L$ space (and vice versa).
LA - eng
KW - zero set universals; continuous function universals; $S$ and $L$ spaces; admissible topology; cardinal invariants; function spaces; zero set universals; continuous function universals; and spaces; admissible topology
UR - http://eudml.org/doc/249556
ER -
References
top- Arens R., Dugundji J., Topologies for function spaces, Pacific J. Math. 1 (1951), 5-31. (1951) Zbl0044.11801MR0043447
- Arhangel'skii A.V., Topological Function Spaces, Kluwer Academic Publishers, 1992. MR1485266
- Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
- Gartside P., Marsh A., Compact universals, Topology Appl. 143 (2004), 1-3 1-13. (2004) Zbl1056.54021MR2080279
- Gartside P.M., Knight R.W., Lo J.T.H., Parametrizing open universals, Topology Appl. 119 (2002), 2 131-145. (2002) Zbl0990.54003MR1886091
- Gartside P.M., Lo J.T.H., The hierarchy of Borel universal sets, Topology Appl. 119 (2002), 117-129. (2002) Zbl1006.54049MR1886090
- Gartside P.M., Lo J.T.H., Open universal sets, Topology Appl. 129 (2003), 1 89-101. (2003) Zbl1017.54020MR1955668
- Gruenhage G., Continuously perfect normal spaces and some generalizations, Trans. Amer. Math. Soc. 224 (1976), 323-338. (1976) MR0428275
- Gruenhage G., Generalized metric spaces, in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp,423-501. Zbl0794.54034MR0776629
- Gul'ko S.P., On properties of subsets of -products, Soviet Math. Dokl. 18 (1977), 1438-1442. (1977)
- Hodel R., Cardinal functions I, in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp.1-61. Zbl0559.54003MR0776620
- Marsh A., Topology of function spaces, PhD. Thesis, Univ. Pittsburgh, 2004.
- Nakhmanson L.B., The Suslin number and calibres of the ring of continuous functions, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1984), 49-55. (1984) MR0743686
- Todorčević S., Partition Problems in Topology, Contemporary Mathematics 84, Amer. Math. Soc., Providence, RI, 1989. MR0980949
- Zenor P., Some continuous separation axioms, Fund. Math. 90 2 (1975/1976), 143-158. (1975/1976) MR0394561
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.