Cardinal invariants of universals

Gareth Fairey; Paul Gartside; Andrew Marsh

Commentationes Mathematicae Universitatis Carolinae (2005)

  • Volume: 46, Issue: 4, page 685-703
  • ISSN: 0010-2628

Abstract

top
We examine when a space X has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the σ -weight of X when X is perfectly normal. We also show that if Y parametrises a zero set universal for X then h L ( X n ) h d ( Y ) for all n . We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space has a K -coarser topology. Examples are given including an S space with zero set universal parametrised by an L space (and vice versa).

How to cite

top

Fairey, Gareth, Gartside, Paul, and Marsh, Andrew. "Cardinal invariants of universals." Commentationes Mathematicae Universitatis Carolinae 46.4 (2005): 685-703. <http://eudml.org/doc/249556>.

@article{Fairey2005,
abstract = {We examine when a space $X$ has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the $\sigma $-weight of $X$ when $X$ is perfectly normal. We also show that if $Y$ parametrises a zero set universal for $X$ then $hL(X^n)\le hd(Y)$ for all $n\in \mathbb \{N\}$. We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space has a $K$-coarser topology. Examples are given including an $S$ space with zero set universal parametrised by an $L$ space (and vice versa).},
author = {Fairey, Gareth, Gartside, Paul, Marsh, Andrew},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {zero set universals; continuous function universals; $S$ and $L$ spaces; admissible topology; cardinal invariants; function spaces; zero set universals; continuous function universals; and spaces; admissible topology},
language = {eng},
number = {4},
pages = {685-703},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Cardinal invariants of universals},
url = {http://eudml.org/doc/249556},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Fairey, Gareth
AU - Gartside, Paul
AU - Marsh, Andrew
TI - Cardinal invariants of universals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 4
SP - 685
EP - 703
AB - We examine when a space $X$ has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the $\sigma $-weight of $X$ when $X$ is perfectly normal. We also show that if $Y$ parametrises a zero set universal for $X$ then $hL(X^n)\le hd(Y)$ for all $n\in \mathbb {N}$. We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space has a $K$-coarser topology. Examples are given including an $S$ space with zero set universal parametrised by an $L$ space (and vice versa).
LA - eng
KW - zero set universals; continuous function universals; $S$ and $L$ spaces; admissible topology; cardinal invariants; function spaces; zero set universals; continuous function universals; and spaces; admissible topology
UR - http://eudml.org/doc/249556
ER -

References

top
  1. Arens R., Dugundji J., Topologies for function spaces, Pacific J. Math. 1 (1951), 5-31. (1951) Zbl0044.11801MR0043447
  2. Arhangel'skii A.V., Topological Function Spaces, Kluwer Academic Publishers, 1992. MR1485266
  3. Engelking R., General Topology, Heldermann, Berlin, 1989. Zbl0684.54001MR1039321
  4. Gartside P., Marsh A., Compact universals, Topology Appl. 143 (2004), 1-3 1-13. (2004) Zbl1056.54021MR2080279
  5. Gartside P.M., Knight R.W., Lo J.T.H., Parametrizing open universals, Topology Appl. 119 (2002), 2 131-145. (2002) Zbl0990.54003MR1886091
  6. Gartside P.M., Lo J.T.H., The hierarchy of Borel universal sets, Topology Appl. 119 (2002), 117-129. (2002) Zbl1006.54049MR1886090
  7. Gartside P.M., Lo J.T.H., Open universal sets, Topology Appl. 129 (2003), 1 89-101. (2003) Zbl1017.54020MR1955668
  8. Gruenhage G., Continuously perfect normal spaces and some generalizations, Trans. Amer. Math. Soc. 224 (1976), 323-338. (1976) MR0428275
  9. Gruenhage G., Generalized metric spaces, in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp,423-501. Zbl0794.54034MR0776629
  10. Gul'ko S.P., On properties of subsets of Σ -products, Soviet Math. Dokl. 18 (1977), 1438-1442. (1977) 
  11. Hodel R., Cardinal functions I, in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp.1-61. Zbl0559.54003MR0776620
  12. Marsh A., Topology of function spaces, PhD. Thesis, Univ. Pittsburgh, 2004. 
  13. Nakhmanson L.B., The Suslin number and calibres of the ring of continuous functions, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1984), 49-55. (1984) MR0743686
  14. Todorčević S., Partition Problems in Topology, Contemporary Mathematics 84, Amer. Math. Soc., Providence, RI, 1989. MR0980949
  15. Zenor P., Some continuous separation axioms, Fund. Math. 90 2 (1975/1976), 143-158. (1975/1976) MR0394561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.