Weak alg-universality and -universality of semigroup quasivarieties
Commentationes Mathematicae Universitatis Carolinae (2005)
- Volume: 46, Issue: 2, page 257-279
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDemlová, Marie, and Koubek, Václav. "Weak alg-universality and $Q$-universality of semigroup quasivarieties." Commentationes Mathematicae Universitatis Carolinae 46.2 (2005): 257-279. <http://eudml.org/doc/249558>.
@article{Demlová2005,
abstract = {In an earlier paper, the authors showed that standard semigroups $\mathbf \{M\}_1$, $\mathbf \{M\}_2$ and $\mathbf \{M\}_3$ play an important role in the classification of weaker versions of alg-universality of semigroup varieties. This paper shows that quasivarieties generated by $\mathbf \{M\}_2$ and $\mathbf \{M\}_3$ are neither relatively alg-universal nor $Q$-universal, while there do exist finite semigroups $\mathbf \{S\}_2$ and $\mathbf \{S\}_3$ generating the same semigroup variety as $\mathbf \{M\}_2$ and $\mathbf \{M\}_3$ respectively and the quasivarieties generated by $\mathbf \{S\}_2$ and/or $\mathbf \{S\}_3$ are quasivar-relatively $f\!f$-alg-universal and $Q$-universal (meaning that their respective lattices of subquasivarieties are quite rich). An analogous result on $Q$-universality of the variety generated by $\mathbf \{M\}_2$ was obtained by M.V. Sapir; the size of our semigroup is substantially smaller than that of Sapir’s semigroup.},
author = {Demlová, Marie, Koubek, Václav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semigroup quasivariety; full embedding; $f\!f$-alg-universality; $Q$-universality; semigroup quasivarieties; full embeddings; semigroup varieties; -alg-universality; -universality; finite semigroups; lattices of quasivarieties},
language = {eng},
number = {2},
pages = {257-279},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weak alg-universality and $Q$-universality of semigroup quasivarieties},
url = {http://eudml.org/doc/249558},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Demlová, Marie
AU - Koubek, Václav
TI - Weak alg-universality and $Q$-universality of semigroup quasivarieties
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 2
SP - 257
EP - 279
AB - In an earlier paper, the authors showed that standard semigroups $\mathbf {M}_1$, $\mathbf {M}_2$ and $\mathbf {M}_3$ play an important role in the classification of weaker versions of alg-universality of semigroup varieties. This paper shows that quasivarieties generated by $\mathbf {M}_2$ and $\mathbf {M}_3$ are neither relatively alg-universal nor $Q$-universal, while there do exist finite semigroups $\mathbf {S}_2$ and $\mathbf {S}_3$ generating the same semigroup variety as $\mathbf {M}_2$ and $\mathbf {M}_3$ respectively and the quasivarieties generated by $\mathbf {S}_2$ and/or $\mathbf {S}_3$ are quasivar-relatively $f\!f$-alg-universal and $Q$-universal (meaning that their respective lattices of subquasivarieties are quite rich). An analogous result on $Q$-universality of the variety generated by $\mathbf {M}_2$ was obtained by M.V. Sapir; the size of our semigroup is substantially smaller than that of Sapir’s semigroup.
LA - eng
KW - semigroup quasivariety; full embedding; $f\!f$-alg-universality; $Q$-universality; semigroup quasivarieties; full embeddings; semigroup varieties; -alg-universality; -universality; finite semigroups; lattices of quasivarieties
UR - http://eudml.org/doc/249558
ER -
References
top- Adámek J., Rosický J., Locally Presentable and Accessible Categories, Cambridge University Press Cambridge (1994). (1994) MR1294136
- Adams M.E., Adaricheva K.V., Dziobiak W., Kravchenko A.V., Some open questions related to the problem of Birkhoff and Maltsev, Studia Logica 78 (2004), 357-378. (2004) MR2108035
- Adams M.E., Dziobiak W., -universal quasivarieties of algebras, Proc. Amer. Math. Soc. 120 (1994), 1053-1059. (1994) Zbl0810.08007MR1172942
- Adams M.E., Dziobiak W., Lattices of quasivarieties of -element algebras, J. of Algebra 166 (1994),181-210. (1994) Zbl0806.08005MR1276823
- Adams M.E., Dziobiak W., Finite-to-finite universal quasivarieties are -universal, Algebra Universalis 46 (2001), 253-283. (2001) Zbl1059.08002MR1835799
- Adams M.E., Dziobiak W., The lattice of quasivarieties of undirected graphs, Algebra Universalis 47 (2002), 7-11. (2002) Zbl1059.08003MR1901728
- Adams M.E., Dziobiak W., Quasivarieties of idempotent semigroups, Internat. J. Algebra Comput. 13 (2003), 733-752. (2003) Zbl1042.08002MR2028101
- Demlová M., Koubek V., Endomorphism monoids in varieties of bands, Acta Sci. Math. (Szeged) 66 (2000), 477-516. (2000) MR1804205
- Demlová M., Koubek V., A weak version of universality in semigroup varieties, Novi Sad J. Math. 34 (2004), 37-86. (2004) MR2136462
- Gorbunov V.A., Algebraic Theory of Quasivarieties, Plenum Publishing Co. New York (1998). (1998) Zbl0986.08001MR1654844
- Hedrlín Z., Lambek J., How comprehensive is the category of semigroups?, J. Algebra 11 (1969), 195-212. (1969) MR0237611
- Koubek V., Sichler J., Universal varieties of semigroups, J. Austral. Math. Soc. Ser. A 36 (1984), 143-152. (1984) Zbl0549.20038MR0725742
- Koubek V., Sichler J., On relative universality and -universality, Studia Logica 78 (2004), 279-291. (2004) Zbl1079.08009MR2108030
- Koubek V., Sichler J., Almost -universal and -universal varieties of modular -lattices, Colloq. Math. 101 (2004), 161-182. (2004) Zbl1066.06004MR2110722
- Kravchenko A.V., -universal quasivarieties of graphs, Algebra and Logic 41 (2002), 173-181. (2002) Zbl1062.08013MR1934538
- Mendelsohn E., On a technique for representing semigroups as endomorphism semigroups of graphs with given properties, Semigroup Forum 4 (1972), 283-294. (1972) Zbl0262.20083MR0304533
- Pultr A., Trnková V., Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland Amsterdam (1980). (1980) MR0563525
- Sapir M.V., The lattice of quasivarieties of semigroups, Algebra Universalis 21 (1985), 172-180. (1985) Zbl0599.08014MR0855737
- Sizyi S.V., Quasivarieties of graphs, Siberian Math. J. 35 (1994), 783-794. (1994) MR1302441
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.