Kanas, Stanisława, and Kowalczyk, Joanna. "A note on Briot-Bouquet-Bernoulli differential subordination." Commentationes Mathematicae Universitatis Carolinae 46.2 (2005): 339-347. <http://eudml.org/doc/249573>.
@article{Kanas2005,
abstract = {Let $p, q$ be analytic functions in the unit disk $\mathcal \{U\}$. For $\alpha \in [0,1)$ the authors consider the differential subordination and the differential equation of the Briot-Bouquet type: \[ p^\{1-\alpha \}(z)+\frac\{zp^\{\prime \}(z)\}\{\delta p^\{\alpha \}(z) + \lambda p(z)\}\prec h(z), \quad z\in \mathcal \{U\}, \]\[ q^\{1-\alpha \}(z)+\frac\{nzq^\{\prime \}(z)\}\{\delta q^\{\alpha \}(z)+\lambda q(z)\} = h(z),\quad z\in \mathcal \{U\}, \]
with $p(0) =q(0) =h(0)=1$. The aim of the paper is to find the dominant and the best dominant of the above subordination. In addition, the authors give some particular cases of the main result obtained for appropriate choices of functions $h$.},
author = {Kanas, Stanisława, Kowalczyk, Joanna},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {differential subordinations; Briot-Bouquet-Bernoulli differential subordination; Briot-Bouquet-Bernoulli differential subordination},
language = {eng},
number = {2},
pages = {339-347},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on Briot-Bouquet-Bernoulli differential subordination},
url = {http://eudml.org/doc/249573},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Kanas, Stanisława
AU - Kowalczyk, Joanna
TI - A note on Briot-Bouquet-Bernoulli differential subordination
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2005
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 46
IS - 2
SP - 339
EP - 347
AB - Let $p, q$ be analytic functions in the unit disk $\mathcal {U}$. For $\alpha \in [0,1)$ the authors consider the differential subordination and the differential equation of the Briot-Bouquet type: \[ p^{1-\alpha }(z)+\frac{zp^{\prime }(z)}{\delta p^{\alpha }(z) + \lambda p(z)}\prec h(z), \quad z\in \mathcal {U}, \]\[ q^{1-\alpha }(z)+\frac{nzq^{\prime }(z)}{\delta q^{\alpha }(z)+\lambda q(z)} = h(z),\quad z\in \mathcal {U}, \]
with $p(0) =q(0) =h(0)=1$. The aim of the paper is to find the dominant and the best dominant of the above subordination. In addition, the authors give some particular cases of the main result obtained for appropriate choices of functions $h$.
LA - eng
KW - differential subordinations; Briot-Bouquet-Bernoulli differential subordination; Briot-Bouquet-Bernoulli differential subordination
UR - http://eudml.org/doc/249573
ER -