On the oscillation of solutions of third order linear difference equations of neutral type

Anna Andruch-Sobiło; Małgorzata Migda

Mathematica Bohemica (2005)

  • Volume: 130, Issue: 1, page 19-33
  • ISSN: 0862-7959

Abstract

top
In this note we consider the third order linear difference equations of neutral type Δ 3 [ x ( n ) - p ( n ) x ( σ ( n ) ) ] + δ q ( n ) x ( τ ( n ) ) = 0 , n N ( n 0 ) , ( E ) where δ = ± 1 , p , q N ( n 0 ) + ; σ , τ N ( n 0 ) , lim n σ ( n ) = lim n τ ( n ) = . We examine the following two cases: { 0 < p ( n ) 1 , σ ( n ) = n + k , τ ( n ) = n + l } , { p ( n ) > 1 , σ ( n ) = n - k , τ ( n ) = n - l } , where k , l are positive integers and we obtain sufficient conditions under which all solutions of the above equations are oscillatory.

How to cite

top

Andruch-Sobiło, Anna, and Migda, Małgorzata. "On the oscillation of solutions of third order linear difference equations of neutral type." Mathematica Bohemica 130.1 (2005): 19-33. <http://eudml.org/doc/249603>.

@article{Andruch2005,
abstract = {In this note we consider the third order linear difference equations of neutral type \[ \Delta ^\{3\}[x(n)-p(n)x(\sigma (n))]+\delta q(n)x(\tau (n))=0, \quad n \in N(n\_0), \qquad \mathrm \{(\{\mathrm \{E\}\})\}\] where $\delta =\pm 1$, $p,q\: N(n_0)\rightarrow \mathbb \{R\}_+;$$\sigma ,\tau \: N(n_0)\rightarrow \mathbb \{N\}$, $\lim _\{n \rightarrow \infty \}\sigma (n)= \lim \limits _\{n \rightarrow \infty \}\tau (n)= \infty .$ We examine the following two cases: \[ \BOF \begin\{@align\}\{1\}\{-1\}\lbrace 0<p(n)&\le 1, \ \sigma (n)=n+k,\ \tau (n)=n+l\rbrace , \lbrace p(n)&>1, \ \sigma (n)=n-k,\ \tau (n)=n-l\rbrace , \BOF \end\{@align\}\] where $k$, $l$ are positive integers and we obtain sufficient conditions under which all solutions of the above equations are oscillatory.},
author = {Andruch-Sobiło, Anna, Migda, Małgorzata},
journal = {Mathematica Bohemica},
keywords = {neutral type difference equation; nonoscillatory solution; asymptotic behavior; oscillation; third order linear difference equations; neutral type difference equation; nonoscillatory solution; asymptotic behavior; oscillation; third order linear difference equations},
language = {eng},
number = {1},
pages = {19-33},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the oscillation of solutions of third order linear difference equations of neutral type},
url = {http://eudml.org/doc/249603},
volume = {130},
year = {2005},
}

TY - JOUR
AU - Andruch-Sobiło, Anna
AU - Migda, Małgorzata
TI - On the oscillation of solutions of third order linear difference equations of neutral type
JO - Mathematica Bohemica
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 130
IS - 1
SP - 19
EP - 33
AB - In this note we consider the third order linear difference equations of neutral type \[ \Delta ^{3}[x(n)-p(n)x(\sigma (n))]+\delta q(n)x(\tau (n))=0, \quad n \in N(n_0), \qquad \mathrm {({\mathrm {E}})}\] where $\delta =\pm 1$, $p,q\: N(n_0)\rightarrow \mathbb {R}_+;$$\sigma ,\tau \: N(n_0)\rightarrow \mathbb {N}$, $\lim _{n \rightarrow \infty }\sigma (n)= \lim \limits _{n \rightarrow \infty }\tau (n)= \infty .$ We examine the following two cases: \[ \BOF \begin{@align}{1}{-1}\lbrace 0<p(n)&\le 1, \ \sigma (n)=n+k,\ \tau (n)=n+l\rbrace , \lbrace p(n)&>1, \ \sigma (n)=n-k,\ \tau (n)=n-l\rbrace , \BOF \end{@align}\] where $k$, $l$ are positive integers and we obtain sufficient conditions under which all solutions of the above equations are oscillatory.
LA - eng
KW - neutral type difference equation; nonoscillatory solution; asymptotic behavior; oscillation; third order linear difference equations; neutral type difference equation; nonoscillatory solution; asymptotic behavior; oscillation; third order linear difference equations
UR - http://eudml.org/doc/249603
ER -

References

top
  1. Difference Equations and Inequalities, 2nd edition, Pure Appl. Math. 228, Marcel Dekker, New York, 2000. (2000) Zbl0952.39001MR1740241
  2. Oscillation Theory of Difference and Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 2000. (2000) MR1774732
  3. Oscillation of third order linear neutral differential equations, Studies of University in Žilina 13 (2001), 7–15. (2001) Zbl1040.34078MR1873438
  4. Some oscillatory properties of third order linear neutral differential equations, Folia FSN Universitatis Masarykianae Brunensis, Mathematica 13 (2003), 17–23. (2003) Zbl1111.34332MR2030018
  5. 10.1016/0898-1221(94)00223-8, Computers Math. Appl. 29 (1995), 5–11. (1995) MR1326277DOI10.1016/0898-1221(94)00223-8
  6. Oscillation of nonlinear first order neutral difference equations, Appl. Math. E-Notes 1 (2001), 5–10. (2001) MR1833830
  7. On the oscillation of certain neutral difference equations, Math. Bohem. 125 (2000), 307–321. (2000) MR1790122
  8. Oscillatory properties of third order neutral delay differential equations, Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dyn. Syst. (2003), suppl., 342–350. MR2018134
  9. 10.1016/0898-1221(94)00107-3, Comput. Math. Appl. 28 (1994), 191–202. (1994) Zbl0807.39004MR1284234DOI10.1016/0898-1221(94)00107-3
  10. 10.1016/0022-247X(91)90278-8, J. Math. Anal. Appl. 158 (1991), 213–233. (1991) MR1113411DOI10.1016/0022-247X(91)90278-8
  11. 10.1017/S0334270000008754, J. Austral. Math. Soc. Ser. B 34 (1992), 245–256. (1992) MR1181576DOI10.1017/S0334270000008754
  12. On a class of first order nonlinear difference equations of neutral type, (to appear). (to appear) 
  13. Oscillation and nonoscillation of an odd-order nonlinear difference equation, Funct. Differ. Equ. 7 (2000), 1–2, 157–166. (2000) MR1941865
  14. Oscillation of first order neutral delay difference equations, Appl. Math. E-Notes 3 (2003), 88–94. (2003) MR1980570
  15. Oscillatory properties of third order neutral delay difference equations, Demonstratio Math. 35 (2002), 325–337. (2002) MR1907305
  16. Oscillation properties of first order nonlinear functional difference equations of neutral type, Indian J. Math. 36 (1994), 59–71. (1994) MR1315896
  17. Asymptotic and oscillatory behavior of solutions of first order nonlinear neutral difference equations, Rivista Math. Pura Appl. 18 (1996), 93–105. (1996) MR1600048
  18. 10.1016/0893-9659(93)90015-F, Appl. Math. Lett. 6 (1993), 71–74. (1993) MR1347777DOI10.1016/0893-9659(93)90015-F
  19. Oscillation of nonlinear neutral difference equations, Appl. Math. E-Notes 2 (2002), 22–24. (2002) MR1979405
  20. Oscillation for nonlinear difference equation of higher order, J. Math. Study 34 (2001), 282–286. (2001) MR1864910

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.