On the oscillation of solutions of third order linear difference equations of neutral type
Anna Andruch-Sobiło; Małgorzata Migda
Mathematica Bohemica (2005)
- Volume: 130, Issue: 1, page 19-33
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAndruch-Sobiło, Anna, and Migda, Małgorzata. "On the oscillation of solutions of third order linear difference equations of neutral type." Mathematica Bohemica 130.1 (2005): 19-33. <http://eudml.org/doc/249603>.
@article{Andruch2005,
abstract = {In this note we consider the third order linear difference equations of neutral type \[ \Delta ^\{3\}[x(n)-p(n)x(\sigma (n))]+\delta q(n)x(\tau (n))=0, \quad n \in N(n\_0), \qquad \mathrm \{(\{\mathrm \{E\}\})\}\]
where $\delta =\pm 1$, $p,q\: N(n_0)\rightarrow \mathbb \{R\}_+;$$\sigma ,\tau \: N(n_0)\rightarrow \mathbb \{N\}$, $\lim _\{n \rightarrow \infty \}\sigma (n)= \lim \limits _\{n \rightarrow \infty \}\tau (n)= \infty .$ We examine the following two cases: \[ \BOF \begin\{@align\}\{1\}\{-1\}\lbrace 0<p(n)&\le 1, \ \sigma (n)=n+k,\ \tau (n)=n+l\rbrace , \lbrace p(n)&>1, \ \sigma (n)=n-k,\ \tau (n)=n-l\rbrace , \BOF \end\{@align\}\]
where $k$, $l$ are positive integers and we obtain sufficient conditions under which all solutions of the above equations are oscillatory.},
author = {Andruch-Sobiło, Anna, Migda, Małgorzata},
journal = {Mathematica Bohemica},
keywords = {neutral type difference equation; nonoscillatory solution; asymptotic behavior; oscillation; third order linear difference equations; neutral type difference equation; nonoscillatory solution; asymptotic behavior; oscillation; third order linear difference equations},
language = {eng},
number = {1},
pages = {19-33},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the oscillation of solutions of third order linear difference equations of neutral type},
url = {http://eudml.org/doc/249603},
volume = {130},
year = {2005},
}
TY - JOUR
AU - Andruch-Sobiło, Anna
AU - Migda, Małgorzata
TI - On the oscillation of solutions of third order linear difference equations of neutral type
JO - Mathematica Bohemica
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 130
IS - 1
SP - 19
EP - 33
AB - In this note we consider the third order linear difference equations of neutral type \[ \Delta ^{3}[x(n)-p(n)x(\sigma (n))]+\delta q(n)x(\tau (n))=0, \quad n \in N(n_0), \qquad \mathrm {({\mathrm {E}})}\]
where $\delta =\pm 1$, $p,q\: N(n_0)\rightarrow \mathbb {R}_+;$$\sigma ,\tau \: N(n_0)\rightarrow \mathbb {N}$, $\lim _{n \rightarrow \infty }\sigma (n)= \lim \limits _{n \rightarrow \infty }\tau (n)= \infty .$ We examine the following two cases: \[ \BOF \begin{@align}{1}{-1}\lbrace 0<p(n)&\le 1, \ \sigma (n)=n+k,\ \tau (n)=n+l\rbrace , \lbrace p(n)&>1, \ \sigma (n)=n-k,\ \tau (n)=n-l\rbrace , \BOF \end{@align}\]
where $k$, $l$ are positive integers and we obtain sufficient conditions under which all solutions of the above equations are oscillatory.
LA - eng
KW - neutral type difference equation; nonoscillatory solution; asymptotic behavior; oscillation; third order linear difference equations; neutral type difference equation; nonoscillatory solution; asymptotic behavior; oscillation; third order linear difference equations
UR - http://eudml.org/doc/249603
ER -
References
top- Difference Equations and Inequalities, 2nd edition, Pure Appl. Math. 228, Marcel Dekker, New York, 2000. (2000) Zbl0952.39001MR1740241
- Oscillation Theory of Difference and Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 2000. (2000) MR1774732
- Oscillation of third order linear neutral differential equations, Studies of University in Žilina 13 (2001), 7–15. (2001) Zbl1040.34078MR1873438
- Some oscillatory properties of third order linear neutral differential equations, Folia FSN Universitatis Masarykianae Brunensis, Mathematica 13 (2003), 17–23. (2003) Zbl1111.34332MR2030018
- 10.1016/0898-1221(94)00223-8, Computers Math. Appl. 29 (1995), 5–11. (1995) MR1326277DOI10.1016/0898-1221(94)00223-8
- Oscillation of nonlinear first order neutral difference equations, Appl. Math. E-Notes 1 (2001), 5–10. (2001) MR1833830
- On the oscillation of certain neutral difference equations, Math. Bohem. 125 (2000), 307–321. (2000) MR1790122
- Oscillatory properties of third order neutral delay differential equations, Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dyn. Syst. (2003), suppl., 342–350. MR2018134
- 10.1016/0898-1221(94)00107-3, Comput. Math. Appl. 28 (1994), 191–202. (1994) Zbl0807.39004MR1284234DOI10.1016/0898-1221(94)00107-3
- 10.1016/0022-247X(91)90278-8, J. Math. Anal. Appl. 158 (1991), 213–233. (1991) MR1113411DOI10.1016/0022-247X(91)90278-8
- 10.1017/S0334270000008754, J. Austral. Math. Soc. Ser. B 34 (1992), 245–256. (1992) MR1181576DOI10.1017/S0334270000008754
- On a class of first order nonlinear difference equations of neutral type, (to appear). (to appear)
- Oscillation and nonoscillation of an odd-order nonlinear difference equation, Funct. Differ. Equ. 7 (2000), 1–2, 157–166. (2000) MR1941865
- Oscillation of first order neutral delay difference equations, Appl. Math. E-Notes 3 (2003), 88–94. (2003) MR1980570
- Oscillatory properties of third order neutral delay difference equations, Demonstratio Math. 35 (2002), 325–337. (2002) MR1907305
- Oscillation properties of first order nonlinear functional difference equations of neutral type, Indian J. Math. 36 (1994), 59–71. (1994) MR1315896
- Asymptotic and oscillatory behavior of solutions of first order nonlinear neutral difference equations, Rivista Math. Pura Appl. 18 (1996), 93–105. (1996) MR1600048
- 10.1016/0893-9659(93)90015-F, Appl. Math. Lett. 6 (1993), 71–74. (1993) MR1347777DOI10.1016/0893-9659(93)90015-F
- Oscillation of nonlinear neutral difference equations, Appl. Math. E-Notes 2 (2002), 22–24. (2002) MR1979405
- Oscillation for nonlinear difference equation of higher order, J. Math. Study 34 (2001), 282–286. (2001) MR1864910
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.