On holomorphic continuation of functions along boundary sections
S. A. Imomkulov; J. U. Khujamov
Mathematica Bohemica (2005)
- Volume: 130, Issue: 3, page 309-322
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topImomkulov, S. A., and Khujamov, J. U.. "On holomorphic continuation of functions along boundary sections." Mathematica Bohemica 130.3 (2005): 309-322. <http://eudml.org/doc/249606>.
@article{Imomkulov2005,
abstract = {Let $D^\{\prime \} \subset \mathbb \{C\}^\{n-1\}$ be a bounded domain of Lyapunov and $f(z^\{\prime \},z_n)$ a holomorphic function in the cylinder $D=D^\{\prime \}\times U_n$ and continuous on $\bar\{D\}$. If for each fixed $a^\{\prime \}$ in some set $E\subset \partial D^\{\prime \}$, with positive Lebesgue measure $\text\{mes\}\,E>0$, the function $f(a^\{\prime \},z_n)$ of $z_n$ can be continued to a function holomorphic on the whole plane with the exception of some finite number (polar set) of singularities, then $f(z^\{\prime \},z_n)$ can be holomorphically continued to $(D^\{\prime \}\times \mathbb \{C\})\setminus S$, where $S$ is some analytic (closed pluripolar) subset of $D^\{\prime \}\times \mathbb \{C\}$.},
author = {Imomkulov, S. A., Khujamov, J. U.},
journal = {Mathematica Bohemica},
keywords = {holomorphic function; holomorphic continuation; pluripolar set; pseudoconcave set; Jacobi-Hartogs series; holomorphic function; pluripolar set; pseudoconcave set; Jacobi-Hartogs series},
language = {eng},
number = {3},
pages = {309-322},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On holomorphic continuation of functions along boundary sections},
url = {http://eudml.org/doc/249606},
volume = {130},
year = {2005},
}
TY - JOUR
AU - Imomkulov, S. A.
AU - Khujamov, J. U.
TI - On holomorphic continuation of functions along boundary sections
JO - Mathematica Bohemica
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 130
IS - 3
SP - 309
EP - 322
AB - Let $D^{\prime } \subset \mathbb {C}^{n-1}$ be a bounded domain of Lyapunov and $f(z^{\prime },z_n)$ a holomorphic function in the cylinder $D=D^{\prime }\times U_n$ and continuous on $\bar{D}$. If for each fixed $a^{\prime }$ in some set $E\subset \partial D^{\prime }$, with positive Lebesgue measure $\text{mes}\,E>0$, the function $f(a^{\prime },z_n)$ of $z_n$ can be continued to a function holomorphic on the whole plane with the exception of some finite number (polar set) of singularities, then $f(z^{\prime },z_n)$ can be holomorphically continued to $(D^{\prime }\times \mathbb {C})\setminus S$, where $S$ is some analytic (closed pluripolar) subset of $D^{\prime }\times \mathbb {C}$.
LA - eng
KW - holomorphic function; holomorphic continuation; pluripolar set; pseudoconcave set; Jacobi-Hartogs series; holomorphic function; pluripolar set; pseudoconcave set; Jacobi-Hartogs series
UR - http://eudml.org/doc/249606
ER -
References
top- 10.1007/BF02392348, Acta. Math. 149 (1982), 1–40. (1982) MR0674165DOI10.1007/BF02392348
- A local condition for single-valuedness of analytic functions, Math. USSR Sb. 89 (1972), 148–164. (Russian) (1972) MR0322144
- 10.1007/BF01448415, Math. Ann. 62 (1906), 1–88. (1906) MR1511365DOI10.1007/BF01448415
- On holomorphic continuation of functions with special singularities in , Akad. Nauk Armyan. SSR Dokl. 76 (1983), 13–17. (Russian) (1983) MR0704694
- 10.32917/hmj/1558749763, J. Sci. Hiroshima Univ., Ser. A 4 (1934), 93–98. (1934) DOI10.32917/hmj/1558749763
- Boundary problems and various classes of harmonic and subharmonic functions defined in arbitrary domains, Math. USSR Sb. 6 (1939), 345–375. (Russian) (1939)
- 10.1007/BF01175583, Math. Z. 53 (1950), 84–95. (1950) MR0037365DOI10.1007/BF01175583
- Rational approximations and pluripolar sets, Math. USSR Sb. 119 (1982), 96–118. (1982) Zbl0511.32011MR0672412
- A criterion for rapid rational approximation in , Math. USSR Sb. 125 (1984), 269–279. (Russian) (1984) MR0764481
- On continuation of functions with polar singularities, Mat. Sb., N. Ser. 132 (1987), 383–390. (Russian) (1987) MR0889599
- Introduction to the complex analysis. Part II, Nauka, Moskva, 1985. (Russian) (1985) MR0831938
- 10.1090/S0002-9939-1981-0593466-6, Proc. Amer. Math. Soc. 81 (1981), 243–249. (1981) Zbl0407.46046MR0593466DOI10.1090/S0002-9939-1981-0593466-6
- Continuation of functions along a fixed direction, Sibir. Math. Journal 229 (1988), 142–147. (Russian) (1988)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.