Explicit lower bounds for linear forms in two logarithms
- [1] Institut de Mathématiques de Luminy 163, Avenue de Luminy, case 907 13288 Marseille Cedex 9, France
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 1, page 125-146
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGouillon, Nicolas. "Explicit lower bounds for linear forms in two logarithms." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 125-146. <http://eudml.org/doc/249609>.
@article{Gouillon2006,
abstract = {We give an explicit lower bound for linear forms in two logarithms. For this we specialize the so-called Schneider method with multiplicity described in [10]. We substantially improve the numerical constants involved in existing statements for linear forms in two logarithms, obtained from Baker’s method or Schneider’s method with multiplicity. Our constant is around $5.10^\{4\}$ instead of $10^\{8\}$.},
affiliation = {Institut de Mathématiques de Luminy 163, Avenue de Luminy, case 907 13288 Marseille Cedex 9, France},
author = {Gouillon, Nicolas},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {linear form in the logarithms of algebraic numbers},
language = {eng},
number = {1},
pages = {125-146},
publisher = {Université Bordeaux 1},
title = {Explicit lower bounds for linear forms in two logarithms},
url = {http://eudml.org/doc/249609},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Gouillon, Nicolas
TI - Explicit lower bounds for linear forms in two logarithms
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 125
EP - 146
AB - We give an explicit lower bound for linear forms in two logarithms. For this we specialize the so-called Schneider method with multiplicity described in [10]. We substantially improve the numerical constants involved in existing statements for linear forms in two logarithms, obtained from Baker’s method or Schneider’s method with multiplicity. Our constant is around $5.10^{4}$ instead of $10^{8}$.
LA - eng
KW - linear form in the logarithms of algebraic numbers
UR - http://eudml.org/doc/249609
ER -
References
top- Alan Baker, Transcendental number theory. Cambridge University Press, London, 1975. Zbl0297.10013MR422171
- Nicolas Gouillon, Un lemme de zéros. C. R. Math. Acad. Sci. Paris, 335 (2) (2002), 167–170. Zbl1031.11046MR1920014
- Nicolas Gouillon, Minorations explicites de formes linéaires en deux logarithmes. Thesis (2003) : http://tel.ccsd.cnrs.fr/documents/archives0/00/00/39/64/index_fr.html
- Michel Laurent, Linear forms in two logarithms and interpolation determinants. Acta Arith. 66 (2) (1994), 181–199. Zbl0801.11034MR1276987
- Michel Laurent, Maurice Mignotte, Yuri Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (2) (1995), 285–321. Zbl0843.11036MR1366574
- D. W. Masser, On polynomials and exponential polynomials in several complex variables. Invent. Math. 63 (1) (1981), 81–95. Zbl0436.32005MR608529
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (6) (2000), 125–180. Zbl1013.11043MR1817252
- Maurice Mignotte, Michel Waldschmidt, Linear forms in two logarithms and Schneider’s method. II. Acta Arith. 53 (3) (1989), 251–287. Zbl0642.10034MR1032827
- Michel Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques. Canad. J. Math. 45 (1) (1993), 176–224. Zbl0774.11036MR1200327
- Michel Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Springer-Verlag, 1999. Zbl0944.11024MR1756786
- Kun Rui Yu, Linear forms in -adic logarithms. Acta Arith. 53 (2) (1989), 107–186. Zbl0699.10050MR1027200
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.