Constructing class fields over local fields
- [1] Department of Mathematics and Statistics University of North Carolina Greensboro Greensboro, NC 27402, USA
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 3, page 627-652
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topPauli, Sebastian. "Constructing class fields over local fields." Journal de Théorie des Nombres de Bordeaux 18.3 (2006): 627-652. <http://eudml.org/doc/249641>.
@article{Pauli2006,
abstract = {Let $K$ be a $\{\mathfrak\{p\}\}$-adic field. We give an explicit characterization of the abelian extensions of $K$ of degree $p$ by relating the coefficients of the generating polynomials of extensions $L/K$ of degree $p$ to the exponents of generators of the norm group $N_\{L/K\}(L^*)$. This is applied in an algorithm for the construction of class fields of degree $p^m$, which yields an algorithm for the computation of class fields in general.},
affiliation = {Department of Mathematics and Statistics University of North Carolina Greensboro Greensboro, NC 27402, USA},
author = {Pauli, Sebastian},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {abelian extensions of local fields},
language = {eng},
number = {3},
pages = {627-652},
publisher = {Université Bordeaux 1},
title = {Constructing class fields over local fields},
url = {http://eudml.org/doc/249641},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Pauli, Sebastian
TI - Constructing class fields over local fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 3
SP - 627
EP - 652
AB - Let $K$ be a ${\mathfrak{p}}$-adic field. We give an explicit characterization of the abelian extensions of $K$ of degree $p$ by relating the coefficients of the generating polynomials of extensions $L/K$ of degree $p$ to the exponents of generators of the norm group $N_{L/K}(L^*)$. This is applied in an algorithm for the construction of class fields of degree $p^m$, which yields an algorithm for the computation of class fields in general.
LA - eng
KW - abelian extensions of local fields
UR - http://eudml.org/doc/249641
ER -
References
top- S. Amano, Eisenstein equations of degree p in a -adic field. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 1–21. Zbl0231.12019MR308086
- W. Bosma, J.J. Cannon, Handbook of Magma functions. School of Mathematics, University of Sydney, Sydney, 1995.
- H. Cohen, Advanced topics in computational number theory. Springer Verlag, New York, 1999. Zbl0977.11056MR1728313
- C. Fieker, Computing class fields via the Artin map. Math. Comp. 70 (2001), 1293–1303. Zbl0982.11074MR1826583
- I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. Translations of Mathematical Monographs, vol. 121, American Mathematical Society, 1993. Zbl0781.11042MR1218392
- H. Hasse, Number Theory. Springer Verlag, Berlin, 1980. Zbl0423.12002MR562104
- F. Hess, S. Pauli, M. E. Pohst, Computing the multiplicative group of residue class rings. Math. Comp. 72 (2003), no. 243, 1531–1548. Zbl1013.11073MR1972751
- K. Iwasawa, Local class field theory. Oxford University Press, New York, 1986. Zbl0604.12014MR863740
- M. Krasner, Nombre des extensions d’un degré donné d’un corps -adique Les Tendances Géométriques en Algèbre et Théorie des Nombres, Paris, 1966, 143–169. Zbl0143.06403
- R. E. MacKenzie, G. Whaples, Artin-Schreier equations in characteristic zero. Amer. J. Math. 78 (1956), 473–485. MR 19,834c Zbl0073.26402MR90584
- P. Panayi, Computation of Leopoldt’s p-adic regulator. Dissertation, University of East Anglia, 1995.
- S. Pauli, X.-F. Roblot, On the computation of all extensions of a p-adic field of a given degree. Math. Comp. 70 (2001), 1641–1659. Zbl0981.11038MR1836924
- J.-P. Serre, Corps locaux. Hermann, Paris, 1963. Zbl0137.02601MR354618
- K. Yamamoto, Isomorphism theorem in the local class field theory. Mem. Fac. Sci. Kyushu Ser. A 12 (1958), 67–103. Zbl0083.25901MR150136
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.