Constructing class fields over local fields

Sebastian Pauli[1]

  • [1] Department of Mathematics and Statistics University of North Carolina Greensboro Greensboro, NC 27402, USA

Journal de Théorie des Nombres de Bordeaux (2006)

  • Volume: 18, Issue: 3, page 627-652
  • ISSN: 1246-7405

Abstract

top
Let K be a 𝔭 -adic field. We give an explicit characterization of the abelian extensions of K of degree p by relating the coefficients of the generating polynomials of extensions L / K of degree p to the exponents of generators of the norm group N L / K ( L * ) . This is applied in an algorithm for the construction of class fields of degree p m , which yields an algorithm for the computation of class fields in general.

How to cite

top

Pauli, Sebastian. "Constructing class fields over local fields." Journal de Théorie des Nombres de Bordeaux 18.3 (2006): 627-652. <http://eudml.org/doc/249641>.

@article{Pauli2006,
abstract = {Let $K$ be a $\{\mathfrak\{p\}\}$-adic field. We give an explicit characterization of the abelian extensions of $K$ of degree $p$ by relating the coefficients of the generating polynomials of extensions $L/K$ of degree $p$ to the exponents of generators of the norm group $N_\{L/K\}(L^*)$. This is applied in an algorithm for the construction of class fields of degree $p^m$, which yields an algorithm for the computation of class fields in general.},
affiliation = {Department of Mathematics and Statistics University of North Carolina Greensboro Greensboro, NC 27402, USA},
author = {Pauli, Sebastian},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {abelian extensions of local fields},
language = {eng},
number = {3},
pages = {627-652},
publisher = {Université Bordeaux 1},
title = {Constructing class fields over local fields},
url = {http://eudml.org/doc/249641},
volume = {18},
year = {2006},
}

TY - JOUR
AU - Pauli, Sebastian
TI - Constructing class fields over local fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 3
SP - 627
EP - 652
AB - Let $K$ be a ${\mathfrak{p}}$-adic field. We give an explicit characterization of the abelian extensions of $K$ of degree $p$ by relating the coefficients of the generating polynomials of extensions $L/K$ of degree $p$ to the exponents of generators of the norm group $N_{L/K}(L^*)$. This is applied in an algorithm for the construction of class fields of degree $p^m$, which yields an algorithm for the computation of class fields in general.
LA - eng
KW - abelian extensions of local fields
UR - http://eudml.org/doc/249641
ER -

References

top
  1. S. Amano, Eisenstein equations of degree p in a 𝔭 -adic field. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 1–21. Zbl0231.12019MR308086
  2. W. Bosma, J.J. Cannon, Handbook of Magma functions. School of Mathematics, University of Sydney, Sydney, 1995. 
  3. H. Cohen, Advanced topics in computational number theory. Springer Verlag, New York, 1999. Zbl0977.11056MR1728313
  4. C. Fieker, Computing class fields via the Artin map. Math. Comp. 70 (2001), 1293–1303. Zbl0982.11074MR1826583
  5. I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. Translations of Mathematical Monographs, vol. 121, American Mathematical Society, 1993. Zbl0781.11042MR1218392
  6. H. Hasse, Number Theory. Springer Verlag, Berlin, 1980. Zbl0423.12002MR562104
  7. F. Hess, S. Pauli, M. E. Pohst, Computing the multiplicative group of residue class rings. Math. Comp. 72 (2003), no. 243, 1531–1548. Zbl1013.11073MR1972751
  8. K. Iwasawa, Local class field theory. Oxford University Press, New York, 1986. Zbl0604.12014MR863740
  9. M. Krasner, Nombre des extensions d’un degré donné d’un corps 𝔭 -adique Les Tendances Géométriques en Algèbre et Théorie des Nombres, Paris, 1966, 143–169. Zbl0143.06403
  10. R. E. MacKenzie, G. Whaples, Artin-Schreier equations in characteristic zero. Amer. J. Math. 78 (1956), 473–485. MR 19,834c Zbl0073.26402MR90584
  11. P. Panayi, Computation of Leopoldt’s p-adic regulator. Dissertation, University of East Anglia, 1995. 
  12. S. Pauli, X.-F. Roblot, On the computation of all extensions of a p-adic field of a given degree. Math. Comp. 70 (2001), 1641–1659. Zbl0981.11038MR1836924
  13. J.-P. Serre, Corps locaux. Hermann, Paris, 1963. Zbl0137.02601MR354618
  14. K. Yamamoto, Isomorphism theorem in the local class field theory. Mem. Fac. Sci. Kyushu Ser. A 12 (1958), 67–103. Zbl0083.25901MR150136

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.