PAC fields over number fields
Moshe Jarden[1]
- [1] Tel Aviv University School of Mathematics Ramat Aviv, Tel Aviv 69978, Israel
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 2, page 371-377
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topJarden, Moshe. "PAC fields over number fields." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 371-377. <http://eudml.org/doc/249647>.
@article{Jarden2006,
abstract = {We prove that if $K$ is a number field and $N$ is a Galois extension of $\mathbb\{Q\}$ which is not algebraically closed, then $N$ is not PAC over $K$.},
affiliation = {Tel Aviv University School of Mathematics Ramat Aviv, Tel Aviv 69978, Israel},
author = {Jarden, Moshe},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {field arithmetic; PAC fields},
language = {eng},
number = {2},
pages = {371-377},
publisher = {Université Bordeaux 1},
title = {PAC fields over number fields},
url = {http://eudml.org/doc/249647},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Jarden, Moshe
TI - PAC fields over number fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 371
EP - 377
AB - We prove that if $K$ is a number field and $N$ is a Galois extension of $\mathbb{Q}$ which is not algebraically closed, then $N$ is not PAC over $K$.
LA - eng
KW - field arithmetic; PAC fields
UR - http://eudml.org/doc/249647
ER -
References
top- M. D. Fried, M. Jarden, Field Arithmetic. Second edition, revised and enlarged by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2005. Zbl1055.12003MR2102046
- W.-D. Geyer, M. Jarden, PSC Galois extensions of Hilbertian fields. Mathematische Nachrichten 236 (2002), 119–160. Zbl1007.12003MR1888560
- G. J. Janusz, Algebraic Number Fields. Academic Press, New York, 1973. Zbl0307.12001MR366864
- M. Jarden, A. Razon, Pseudo algebraically closed fields over rings. Israel Journal of Mathematics 86 (1994), 25–59. Zbl0802.12007MR1276130
- M. Jarden, A. Razon, Rumely’s local global principle for algebraic PC fields over rings. Transactions of AMS 350 (1998), 55–85. Zbl0924.11092MR1355075
- S. Lang, Introduction to Algebraic Geometry. Interscience Publishers, New York, 1958. Zbl0095.15301MR100591
- J. Neukirch, Kennzeichnung der -adischen und der endlichen algebraischen Zahlkörper. Inventiones mathematicae 6 (1969), 296–314. Zbl0192.40102MR244211
- A. Razon, Splitting of . Archiv der Mathematik 74 (2000), 263–265 Zbl0954.12001MR1742636
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.