Complete solutions of a family of cubic Thue equations
Alain Togbé[1]
- [1] Mathematics Department Purdue University North Central 1401 S, U.S. 421 Westville IN 46391 USA
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 1, page 285-298
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topTogbé, Alain. "Complete solutions of a family of cubic Thue equations." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 285-298. <http://eudml.org/doc/249648>.
@article{Togbé2006,
abstract = {In this paper, we use Baker’s method, based on linear forms of logarithms, to solve a family of Thue equations associated with a family of number fields of degree 3. We obtain all solutions to the Thue equation\begin\{align*\} \Phi \_n(x,y)&= x^3 + (n^8+2n^6-3n^5+3n^4-4n^3+5n^2-3n+3) x^2 y\\ &\quad - (n^3-2)n^2 x y^2 - y^3 = \pm 1, \end\{align*\}for $n\ge 0$.},
affiliation = {Mathematics Department Purdue University North Central 1401 S, U.S. 421 Westville IN 46391 USA},
author = {Togbé, Alain},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Parametrized Thue equation; Baker's method; Linear forms in logarithms},
language = {eng},
number = {1},
pages = {285-298},
publisher = {Université Bordeaux 1},
title = {Complete solutions of a family of cubic Thue equations},
url = {http://eudml.org/doc/249648},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Togbé, Alain
TI - Complete solutions of a family of cubic Thue equations
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 285
EP - 298
AB - In this paper, we use Baker’s method, based on linear forms of logarithms, to solve a family of Thue equations associated with a family of number fields of degree 3. We obtain all solutions to the Thue equation\begin{align*} \Phi _n(x,y)&= x^3 + (n^8+2n^6-3n^5+3n^4-4n^3+5n^2-3n+3) x^2 y\\ &\quad - (n^3-2)n^2 x y^2 - y^3 = \pm 1, \end{align*}for $n\ge 0$.
LA - eng
KW - Parametrized Thue equation; Baker's method; Linear forms in logarithms
UR - http://eudml.org/doc/249648
ER -
References
top- A. Baker, Contribution to the theory of Diophantine equations. I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173–191. Zbl0157.09702MR228424
- T. Cusick, Lower bounds for regulators. In “Number Theory, Noordwijkerhout, 1983,” Lecture Notes in Mathematics, Vol. 1068, pp. 63–73, Springer-Verlag, Berlin/New York, 1984. Zbl0549.12003MR756083
- M. Daberkow, C. Fieker, J. Kluners, M. E. Pohst, K, Roegner, K. Wildanger, Kant V4. J. Symbolic Comput. 24 (1997) 267-283. Zbl0886.11070MR1484479
- C. Heuberger, A. Togbé, V. Ziegler, Automatic solution of families of Thue equations and an example of degree 8. J. Symbolic Computation 38 (2004), 145–163. Zbl1137.11307MR2093887
- Y. Kishi, A family of cyclic cubic polynomials whose roots are systems of fundamental units. J. Number Theory 102 (2003), 90–106. Zbl1034.11060MR1994474
- M. Mignotte, Verification of a conjecture of E. Thomas. J. Number Theory 44 (1993), 172–177. Zbl0780.11013MR1225951
- M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory. Cambridge University Press, Cambridge, 1989. Zbl0685.12001MR1033013
- E. Thomas, Complete solutions to a family of cubic Diophantine equations. J. Number Theory 34 (1990), 235–250. Zbl0697.10011MR1042497
- A. Thue, Über Annäherungswerte algebraischer Zahlen. J. reine angew. Math. 135, 284-305.
- A. Togbé, A parametric family of cubic Thue equations. J. Number Theory 107 (2004), 63–79. Zbl1065.11017MR2059950
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.