Complete solutions of a family of cubic Thue equations
Alain Togbé[1]
- [1] Mathematics Department Purdue University North Central 1401 S, U.S. 421 Westville IN 46391 USA
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 1, page 285-298
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Baker, Contribution to the theory of Diophantine equations. I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173–191. Zbl0157.09702MR228424
- T. Cusick, Lower bounds for regulators. In “Number Theory, Noordwijkerhout, 1983,” Lecture Notes in Mathematics, Vol. 1068, pp. 63–73, Springer-Verlag, Berlin/New York, 1984. Zbl0549.12003MR756083
- M. Daberkow, C. Fieker, J. Kluners, M. E. Pohst, K, Roegner, K. Wildanger, Kant V4. J. Symbolic Comput. 24 (1997) 267-283. Zbl0886.11070MR1484479
- C. Heuberger, A. Togbé, V. Ziegler, Automatic solution of families of Thue equations and an example of degree 8. J. Symbolic Computation 38 (2004), 145–163. Zbl1137.11307MR2093887
- Y. Kishi, A family of cyclic cubic polynomials whose roots are systems of fundamental units. J. Number Theory 102 (2003), 90–106. Zbl1034.11060MR1994474
- M. Mignotte, Verification of a conjecture of E. Thomas. J. Number Theory 44 (1993), 172–177. Zbl0780.11013MR1225951
- M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory. Cambridge University Press, Cambridge, 1989. Zbl0685.12001MR1033013
- E. Thomas, Complete solutions to a family of cubic Diophantine equations. J. Number Theory 34 (1990), 235–250. Zbl0697.10011MR1042497
- A. Thue, Über Annäherungswerte algebraischer Zahlen. J. reine angew. Math. 135, 284-305.
- A. Togbé, A parametric family of cubic Thue equations. J. Number Theory 107 (2004), 63–79. Zbl1065.11017MR2059950