A class–field theoretical calculation
- [1] University of California, San Diego, Department of Mathematics 9500 Gilman Drive La Jolla, CA 92093-0112, USA
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 2, page 477-486
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topPopescu, Cristian D.. "A class–field theoretical calculation." Journal de Théorie des Nombres de Bordeaux 18.2 (2006): 477-486. <http://eudml.org/doc/249653>.
@article{Popescu2006,
abstract = {In this paper, we give the complete characterization of the $p$–torsion subgroups of certain idèle–class groups associated to characteristic $p$ function fields. As an application, we answer a question which arose in the context of Tan’s approach [6] to an important particular case of a generalization of a conjecture of Gross [4] on special values of $L$–functions.},
affiliation = {University of California, San Diego, Department of Mathematics 9500 Gilman Drive La Jolla, CA 92093-0112, USA},
author = {Popescu, Cristian D.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Class–field theory; Galois cohomology; class field theory},
language = {eng},
number = {2},
pages = {477-486},
publisher = {Université Bordeaux 1},
title = {A class–field theoretical calculation},
url = {http://eudml.org/doc/249653},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Popescu, Cristian D.
TI - A class–field theoretical calculation
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 2
SP - 477
EP - 486
AB - In this paper, we give the complete characterization of the $p$–torsion subgroups of certain idèle–class groups associated to characteristic $p$ function fields. As an application, we answer a question which arose in the context of Tan’s approach [6] to an important particular case of a generalization of a conjecture of Gross [4] on special values of $L$–functions.
LA - eng
KW - Class–field theory; Galois cohomology; class field theory
UR - http://eudml.org/doc/249653
ER -
References
top- E. Artin, J. Tate, Class–field Theory. Addison–Wesley Publishing Co., Inc.- Advanced Book Classics Series, 1990. Zbl0681.12003MR1043169
- K. Brown, Cohomology of Groups. GTM 87, Springer Verlag, 1982. Zbl0584.20036MR672956
- J.W.S. Cassels, A. Fröhlich, Editors, Algebraic Number Theory. Academic Press, London and New York, 1967. Zbl0153.07403MR215665
- B.H. Gross, On the values of abelian –functions at . Jour. Fac. Sci. Univ. Tokyo 35 (1988), 177–197. Zbl0681.12005MR931448
- H. Kisilevsky, Multiplicative independence in function fields. Journal of Number Theory 44 (1993), 352–355. Zbl0780.11058MR1233295
- K.S. Tan, Generalized Stark formulae over function fields, preprint. Zbl1233.11117
- K.S. Tan, Private Communication, 2001–2002.
- J. Tate, Les conjectures de Stark sur les fonctions d’Artin en . Progr. in Math. 47, Boston Birkhäuser, 1984 . Zbl0545.12009MR782485
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.