Some remarks on almost rational torsion points
John Boxall[1]; David Grant[2]
- [1] Laboratoire de Mathématiques Nicolas Oresme, CNRS – UMR 6139 Université de Caen boulevard Maréchal Juin BP 5186, 14032 Caen cedex, France
- [2] Department of Mathematics University of Colorado at Boulder Boulder, Colorado 80309-0395 USA
Journal de Théorie des Nombres de Bordeaux (2006)
- Volume: 18, Issue: 1, page 13-28
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBoxall, John, and Grant, David. "Some remarks on almost rational torsion points." Journal de Théorie des Nombres de Bordeaux 18.1 (2006): 13-28. <http://eudml.org/doc/249655>.
@article{Boxall2006,
abstract = {For a commutative algebraic group $G$ over a perfect field $k$, Ribet defined the set of almost rational torsion points $G^\{\operatorname\{ar\}\}_\{\operatorname\{tors\},k\}$ of $G$ over $k$. For positive integers $d$, $g,$ we show there is an integer $U_\{d,g\}$ such that for all tori $T$ of dimension at most $d$ over number fields of degree at most $g$, $T^\{\operatorname\{ar\}\}_\{\operatorname\{tors\},k\}\subseteq T[U_\{d,g\}]$. We show the corresponding result for abelian varieties with complex multiplication, and under an additional hypothesis, for elliptic curves without complex multiplication. Finally, we show that except for an explicit finite set of semi-abelian varieties $G$ over a finite field $k$, $G^\{\operatorname\{ar\}\}_\{\operatorname\{tors\},k\}$ is infinite, and use this to show for any abelian variety $A$ over a $p$-adic field $k$, there is a finite extension of $k$ over which $A^\{\operatorname\{ar\}\}_\{\operatorname\{tors\},k\}$ is infinite.},
affiliation = {Laboratoire de Mathématiques Nicolas Oresme, CNRS – UMR 6139 Université de Caen boulevard Maréchal Juin BP 5186, 14032 Caen cedex, France; Department of Mathematics University of Colorado at Boulder Boulder, Colorado 80309-0395 USA},
author = {Boxall, John, Grant, David},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Elliptic curves; torsion; almost rational; elliptic curves},
language = {eng},
number = {1},
pages = {13-28},
publisher = {Université Bordeaux 1},
title = {Some remarks on almost rational torsion points},
url = {http://eudml.org/doc/249655},
volume = {18},
year = {2006},
}
TY - JOUR
AU - Boxall, John
AU - Grant, David
TI - Some remarks on almost rational torsion points
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2006
PB - Université Bordeaux 1
VL - 18
IS - 1
SP - 13
EP - 28
AB - For a commutative algebraic group $G$ over a perfect field $k$, Ribet defined the set of almost rational torsion points $G^{\operatorname{ar}}_{\operatorname{tors},k}$ of $G$ over $k$. For positive integers $d$, $g,$ we show there is an integer $U_{d,g}$ such that for all tori $T$ of dimension at most $d$ over number fields of degree at most $g$, $T^{\operatorname{ar}}_{\operatorname{tors},k}\subseteq T[U_{d,g}]$. We show the corresponding result for abelian varieties with complex multiplication, and under an additional hypothesis, for elliptic curves without complex multiplication. Finally, we show that except for an explicit finite set of semi-abelian varieties $G$ over a finite field $k$, $G^{\operatorname{ar}}_{\operatorname{tors},k}$ is infinite, and use this to show for any abelian variety $A$ over a $p$-adic field $k$, there is a finite extension of $k$ over which $A^{\operatorname{ar}}_{\operatorname{tors},k}$ is infinite.
LA - eng
KW - Elliptic curves; torsion; almost rational; elliptic curves
UR - http://eudml.org/doc/249655
ER -
References
top- M. H. Baker, K. A. Ribet, Galois theory and torsion points on curves. Journal de Théorie des Nombres de Bordeaux 15 (2003), 11–32. Zbl1065.11045MR2018998
- Z. I. Borevich, I. R. Shafarevich, Number Theory. Academic Press, New York, San Francisco and London, (1966). Zbl0145.04902MR195803
- S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21. Springer-Verlag, Berlin, 1990. Zbl0705.14001MR1045822
- J. Boxall, D. Grant, Theta functions and singular torsion on elliptic curves, in Number Theory for the Millenium, Bruce Berndt, et. al. editors. A K Peters, Natick, (2002), 111–126. Zbl1195.11076MR1956221
- J. Boxall, D. Grant, Singular torsion points on elliptic curves. Math. Res. Letters 10 (2003), 847–866. Zbl1130.11322MR2025060
- J. Boxall, D. Grant, Examples of torsion points on genus two curves. Trans. AMS 352 (2000), 4533–4555. Zbl1007.11038MR1621721
- F. Calegari, Almost rational torsion points on semistable elliptic curves. Intern. Math. Res. Notices (2001), 487–503. Zbl1002.14004MR1832537
- R. Coleman, Torsion points on curves and -adic abelian integrals. Ann. of Math. (2) 121 (1985), no. 1, 111–168. Zbl0578.14038MR782557
- D. Eisenbud, Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics 150. Springer-Verlag, New York, 1995. Zbl0819.13001MR1322960
- S. Lang, Complex Multiplication. Springer-Verlag, New York, (1983). Zbl0536.14029MR713612
- D. Masser, G. Wüstholz, Galois properties of division fields. Bull. London Math. Soc. 25 (1993), 247–254. Zbl0809.14026MR1209248
- B. Mazur, Rational isogenies of prime degree. Invent. Math. 44 (1978), 129–162. Zbl0386.14009MR482230
- L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), 437-449. Zbl0936.11037MR1369424
- M. Newman, Integral matrices. Academic Press, New York and London (1972). Zbl0254.15009MR340283
- T. Ono, Arithmetic of algebraic tori. Ann. Math. 74 (1961), 101–139. Zbl0119.27801MR124326
- P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres. J. reine angew. Math. 506 (1999), 85–116. Zbl0919.11040MR1665681
- F. Pellarin, Sur une majoration explicite pour un degré d’isogénie liant deux courbes elliptiques. Acta Arith. 100 (2001), 203–243. Zbl0986.11046MR1865384
- M. Raynaud, Courbes sur une variété abélienne et points de torsion. Invent. Math. 71 (1983), 207–233. Zbl0564.14020MR688265
- K. Ribet, M. Kim, Torsion points on modular curves and Galois theory. Notes of a series of talks by K. Ribet in the Distinguished Lecture Series, Southwestern Center for Arithmetic Algebraic Geometry, May 1999. arXiv:math.NT/0305281
- J.-P. Serre, Abelian -adic representations and elliptic curves. Benjamin, New York (1968). Zbl0186.25701MR263823
- J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259–332. Zbl0235.14012MR387283
- J.-P. Serre, Algèbre et géométrie. Ann. Collège de France (1985–1986), 95–100. MR965792
- G. Shimura, Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten Publishers and Princeton University Press (1971). Zbl0221.10029MR314766
- A. Silverberg, Fields of definition for homomorphisms of abelian varieties. J. Pure and Applied Algebra 77 (1992), 253–272. Zbl0808.14037MR1154704
- A. Silverberg, Yu. G. Zarhin, Étale cohomology and reduction of abelian varieties. Bull. Soc. Math. France. 129 (2001), 141–157. Zbl1037.11042MR1871981
- J. Tate, Endomorphisms of abelian varieties over finite fields. Invent. Math. 2 (1966), 134–144. Zbl0147.20303MR206004
- E. Viada, Bounds for minimal elliptic isogenies. Preprint. Zbl1201.11080
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.