Graph selectors and viscosity solutions on Lagrangian manifolds
ESAIM: Control, Optimisation and Calculus of Variations (2006)
- Volume: 12, Issue: 4, page 795-815
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topMcCaffrey, David. "Graph selectors and viscosity solutions on Lagrangian manifolds." ESAIM: Control, Optimisation and Calculus of Variations 12.4 (2006): 795-815. <http://eudml.org/doc/249664>.
@article{McCaffrey2006,
abstract = {
Let $\Lambda $ be a Lagrangian submanifold of $T^\{*\}X$ for some closed
manifold X. Let $S(x,\xi )$ be a generating function for $\Lambda $ which
is quadratic at infinity, and let W(x) be the corresponding graph selector
for $\Lambda ,$ in the sense of Chaperon-Sikorav-Viterbo, so that there
exists a subset $X_\{0\}\subset X$ of measure zero such that W is Lipschitz
continuous on X, smooth on $X\backslash X_\{0\}$ and $(x,\partial W/\partial
x(x))\in \Lambda $ for $X\backslash X_\{0\}.$ Let H(x,p)=0 for $(x,p)\in
\Lambda$. Then W is a classical solution to $H(x,\partial W/\partial
x(x))=0$ on $X\backslash X_\{0\}$ and extends to a Lipschitz function on the
whole of X. Viterbo refers to W as a variational solution. We prove that
W is also a viscosity solution under some simple and natural conditions.
We also prove that these conditions are satisfied in many cases, including
certain commonly occuring cases where H(x,p) is not convex in p.
},
author = {McCaffrey, David},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Viscosity solution; Lagrangian manifold; graph selector.; viscosity solution; graph selector},
language = {eng},
month = {10},
number = {4},
pages = {795-815},
publisher = {EDP Sciences},
title = {Graph selectors and viscosity solutions on Lagrangian manifolds},
url = {http://eudml.org/doc/249664},
volume = {12},
year = {2006},
}
TY - JOUR
AU - McCaffrey, David
TI - Graph selectors and viscosity solutions on Lagrangian manifolds
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2006/10//
PB - EDP Sciences
VL - 12
IS - 4
SP - 795
EP - 815
AB -
Let $\Lambda $ be a Lagrangian submanifold of $T^{*}X$ for some closed
manifold X. Let $S(x,\xi )$ be a generating function for $\Lambda $ which
is quadratic at infinity, and let W(x) be the corresponding graph selector
for $\Lambda ,$ in the sense of Chaperon-Sikorav-Viterbo, so that there
exists a subset $X_{0}\subset X$ of measure zero such that W is Lipschitz
continuous on X, smooth on $X\backslash X_{0}$ and $(x,\partial W/\partial
x(x))\in \Lambda $ for $X\backslash X_{0}.$ Let H(x,p)=0 for $(x,p)\in
\Lambda$. Then W is a classical solution to $H(x,\partial W/\partial
x(x))=0$ on $X\backslash X_{0}$ and extends to a Lipschitz function on the
whole of X. Viterbo refers to W as a variational solution. We prove that
W is also a viscosity solution under some simple and natural conditions.
We also prove that these conditions are satisfied in many cases, including
certain commonly occuring cases where H(x,p) is not convex in p.
LA - eng
KW - Viscosity solution; Lagrangian manifold; graph selector.; viscosity solution; graph selector
UR - http://eudml.org/doc/249664
ER -
References
top- M. Bardi and L.C. Evans, On Hopf's formula for solutions of Hamilton-Jacobi equations. Nonlinear Anal. Th. Meth. Appl.8 (1984) 1373–1381.
- F. Cardin, On viscosity solutions and geometrical solutions of Hamilton-Jacobi equations. Nonlinear Anal. Th. Meth. Appl.20 (1993) 713–719.
- M. Chaperon, Lois de conservation et geometrie symplectique. C.R. Acad. Sci. ParisSer. I Math., 312 (1991) 345–348.
- F.H. Clarke, Optimization and Nonsmooth Analysis. J. Wiley, New York (1983).
- M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. AMS277 (1983) 1–42.
- M.G. Crandall, L.C. Evans and P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. AMS282 (1984) 487–502.
- M.V. Day, On Lagrange manifolds and viscosity solutions. J. Math. Syst. Estim. Contr.8 (1998) URIhttp://www.math.vt.edu/people/day/research/LMVS.pdf
- S.Yu. Dobrokhotov, V.N. Kolokoltsov and V.P. Maslov, Quantization of the Bellman equation, exponential asymptotics and tunneling, in Advances in Soviet Mathematics, V.P. Maslov and S.N. Samborskii, Eds., American Mathematical Society, Providence, Rhode Island 13 (1992) 1–46 .
- W.H Fleming and H.M. Soner, Controlled markov processes and viscosity solutions. Springer-Verlag, New York (1993).
- H. Frankowska, Hamilton-Jacobi equations: viscosity solutions and generalised gradients. J. Math. Anal. Appl.141 (1989) 21–26.
- E. Hopf, Generalized solutions of non-linear equations of first order. J. Math. Mech.14 (1965) 951–973.
- T. Joukovskaia, Thèse de Doctorat, Université de Paris VII, Denis Diderot (1993).
- F. Laudenbach and J.C. Sikorav, Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibre cotangent. Invent. Math.82 (1985) 349–357.
- J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems.Applied Mathematical Sciences Series74, Springer-Verlag, Berlin (1989).
- D. McCaffrey and S.P. Banks, Lagrangian Manifolds, Viscosity Solutions and Maslov Index. J. Convex Anal.9 (2002) 185–224.
- D. McCaffrey, Viscosity Solutions on Lagrangian Manifolds and Connections with Tunnelling Operators, in Idempotent Mathematics and Mathematical Physics, V.P. Maslov and G.L. Litvinov Eds., Contemp. Math.377, American Mathematical Society, Providence, Rhode Island (2005).
- D. McCaffrey, Geometric existence theory for the control-affine problem, to appear in J. Math. Anal & Appl. (August 2005).
- G.P. Paternain, L. Polterovich and K.F. Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections and Aubry-Mather theory. Moscow Math. J.3 (2003) 593–619.
- J.C. Sikorav, Sur les immersions lagrangiennes dans un fibre cotangent admettant une phase generatrice globale. C. R. Acad. Sci. Paris, Ser. I Math.302 (1986) 119–122.
- P. Soravia, control of nonlinear systems: differential games and viscosity solutions. SIAM J. Contr. Opt.34 (1996) 1071–1097.
- A.J. van der Schaft, On a state space approach to nonlinear control. Syst. Contr. Lett.16 (1991) 1–8.
- A.J. van der Schaft, L2 gain analysis of nonlinear systems and nonlinear state feedback control. IEEE Trans. Automatic ControlAC-37 (1992) 770–784.
- C. Viterbo, Symplectic topology as the geometry of generating functions. Math. Ann.292 (1992) 685–710.
- C. Viterbo, Solutions d'equations d'Hamilton-Jacobi et geometrie symplectique, Addendum to: Séminaire sur les équations aux Dérivés Partielles 1994–1995, École Polytech., Palaiseau (1996).
- A. Ottolengi and C. Viterbo, Solutions généralisées pour l'équation de Hamilton-Jacobi dans le cas d'évolution, unpublished.
- A. Weinstein, Lectures on symplectic manifolds, Regional Conference Series in Mathematics 29, Conference Board of the Mathematical Sciences, AMS, Providence, Rhode Island (1977).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.