Hamilton-Jacobi equations for control problems of parabolic equations
Sophie Gombao; Jean-Pierre Raymond
ESAIM: Control, Optimisation and Calculus of Variations (2006)
- Volume: 12, Issue: 2, page 311-349
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- H. Amann, Linear and quasilinear parabolic problems. Vol. I, Abstract linear theory. Birkhäuser Boston Inc., Boston, MA. Monographs Math.89 (1995).
- V. Barbu and G. Da Prato, Hamilton-Jacobi equations in Hilbert spaces, Pitman (Advanced Publishing Program), Boston, MA Res. Notes Math. 86 (1983).
- A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite-dimensional systems. Vol. 1. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1992).
- A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite-dimensional systems. Vol. 2. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1993).
- P. Cannarsa and H. Frankowska, Value function and optimality condition for semilinear control problems. II. Parabolic case. Appl. Math. Optim.33 (1996) 1–33.
- P. Cannarsa and M.E. Tessitore, Cauchy problem for the dynamic programming equation of boundary control. Boundary control and variation (1994) 13–26.
- P. Cannarsa and M.E. Tessitore, Cauchy problem for Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type, in Control of partial differential equations and applications (Laredo, 1994), Dekker, New York. Lect. Notes Pure Appl. Math.174 (1996) 31–42.
- P. Cannarsa and M.E. Tessitore, Dynamic programming equation for a class of nonlinear boundary control problems of parabolic type. Cont. Cybernetics25 (1996) 483–495. Distributed parameter systems: modelling and control (1995).
- P. Cannarsa and M.E. Tessitore, Infinite-dimensional Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type. SIAM J. Control Optim.34 (1996) 1831–1847.
- M.G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions. J. Funct. Anal.62 (1985) 379–396.
- M.G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions. J. Funct. Anal.65 (1986) 368–405.
- M.G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. III. J. Funct. Anal.68 (1986) 214–247.
- M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms. J. Funct. Anal.90 (1990) 237–283.
- M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. V. Unbounded linear terms and B-continuous solutions. J. Funct. Anal.97 (1991) 417–465.
- M.G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. VI. Nonlinear A and Tataru's method refined, in Evolution equations, control theory, and biomathematics (Han sur Lesse 1991), Dekker, New York. Lect. Notes Pure Appl. Math.155 (1994) 51–89.
- M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. VII. The HJB equation is not always satisfied. J. Funct. Anal.125 (1994) 111–148.
- S Gombao, Équations de Hamilton-Jacobi-Bellman pour des problèmes de contrôle d'équations paraboliques semi-linéaires. Approche théorique et numérique. Université Paul Sabatier, Toulouse (2004).
- F. Gozzi, S.S. Sritharan and A. Święch, Viscosity solutions of dynamic-programming equations for the optimal control of the two-dimensional Navier-Stokes equations. Arch. Ration. Mech. Anal.163 (2002) 295–327.
- D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, Berlin. Lect. Notes Math. 840 (1981).
- H. Ishii, Viscosity solutions for a class of Hamilton-Jacobi equations in Hilbert spaces. J. Funct. Anal.105 (1992) 301–341.
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968).
- S.M. Rankin, III. Semilinear evolution equations in Banach spaces with application to parabolic partial differential equations. Trans. Amer. Math. Soc.336 (1993) 523–535.
- J.-P. Raymond, Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete Contin. Dynam. Syst.3 (1997) 341–370.
- J.-P. Raymond and H. Zidani, Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim.39 (1999) 143–177.
- T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, Walter de Gruyter & Co., Berlin, de Gruyter Series in Nonlinear Analysis and Applications3 (1996).
- K. Shimano, A class of Hamilton-Jacobi equations with unbounded coefficients in Hilbert spaces. Appl. Math. Optim.45 (2002) 75–98.
- H.M. Soner, On the Hamilton-Jacobi-Bellman equations in Banach spaces. J. Optim. Theory Appl.57 (1988) 429–437.
- D. Tataru, Viscosity solutions for the dynamic programming equations. Appl. Math. Optim.25 (1992) 109–126.
- D. Tataru, Viscosity solutions for Hamilton-Jacobi equations with unbounded nonlinear term: a simplified approach. J. Differ. Equ.111 (1994) 123–146.