Deterministic blow-ups of minimal NFA's
RAIRO - Theoretical Informatics and Applications (2006)
- Volume: 40, Issue: 3, page 485-499
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- J.C. Birget, Intersection and union of regular languages and state complexity. Inform. Process. Lett.43 (1992) 185–190.
- J.C. Birget, Partial orders on words, minimal elements of regular languages, and state complexity. Theoret. Comput. Sci.119 (1993) 267–291.
- P. Berman and A. Lingas, On the complexity of regular languages in terms of finite automata. Technical Report 304, Polish Academy of Sciences (1977).
- M. Chrobak, Finite automata and unary languages. Theoret. Comput. Sci.47 (1986) 149–158.
- M. Chrobak, Errata to: “Finite automata and unary languages" [Theoret. Comput. Sci.47 (1986) 149–158]. Theoret. Comput. Sci.302 (2003) 497–498.
- I. Glaister and J. Shallit, A lower bound technique for the size of nondeterministic finite automata. Inform. Process. Lett.59 (1996) 75–77.
- M. Holzer and M. Kutrib, Nondeterministic descriptional complexity of regular languages. Internat. J. Found. Comput. Sci.14 (2003) 1087–1102.
- J. Hromkovič, Communication Complexity and Parallel Computing. Springer-Verlag, Berlin, Heidelberg (1997).
- J. Hromkovič, Descriptional complexity of finite automata: concepts and open problems. J. Autom. Lang. Comb.7 (2002) 519–531.
- J. Hromkovič, S. Seibert, J. Karhumäki, H. Klauck and G. Schnitger, Communication complexity method for measuring nondeterminism in finite automata. Inform. Comput.172 (2002) 202–217.
- K. Iwama, Y. Kambayashi and K. Takaki, Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci.237 (2000) 485–494.
- K. Iwama, A. Matsuura and M. Paterson, A family of NFAs which need 2n - α deterministic states. Theoret. Comput. Sci.301 (2003) 451–462.
- G. Jirásková, Note on minimal automata and uniform communication protocols, in Grammars and Automata for String Processing: From Mathematics and Computer Science to Biology, and Back, edited by C. Martin-Vide, V. Mitrana, Taylor and Francis, London (2003) 163–170.
- G. Jirásková, State complexity of some operations on regular languages, in Proc. 5th Workshop Descriptional Complexity of Formal Systems, edited by E. Csuhaj-Varjú, C. Kintala, D. Wotschke, Gy. Vaszil, MTA SZTAKI, Budapest (2003) 114–125.
- O.B. Lupanov, A comparison of two types of finite automata. Problemy Kibernetiki9 (1963) 321–326 (in Russian).
- A.R. Meyer and M.J. Fischer, Economy of description by automata, grammars and formal systems, in Proc. 12th Annual Symposium on Switching and Automata Theory (1971) 188–191.
- F.R. Moore, On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput.20 (1971) 1211–1214.
- M. Rabin and D. Scott, Finite automata and their decision problems. IBM Res. Develop.3 (1959) 114–129.
- M. Sipser, Lower bounds on the size of sweeping automata. J. Comput. System Sci.21 (1980) 195–202.
- M. Sipser, Introduction to the Theory of Computation. PWS Publishing Company, Boston (1997).
- S. Yu, Chapter 2: Regular languages, in Handbook of Formal Languages - Vol. I, edited by G. Rozenberg, A. Salomaa, Springer-Verlag, Berlin, New York (1997) 41–110.
- S. Yu, A renaissance of automata theory? Bull. Eur. Assoc. Theor. Comput. Sci. EATCS72 (2000) 270–272.