Transcendence of numbers with an expansion in a subclass of complexity 2n + 1
RAIRO - Theoretical Informatics and Applications (2006)
- Volume: 40, Issue: 3, page 459-471
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topKärki, Tomi. "Transcendence of numbers with an expansion in a subclass of complexity 2n + 1." RAIRO - Theoretical Informatics and Applications 40.3 (2006): 459-471. <http://eudml.org/doc/249703>.
@article{Kärki2006,
abstract = {
We divide infinite sequences of subword complexity 2n+1 into
four subclasses with respect to left and right special elements
and examine the structure of the subclasses with the help of Rauzy
graphs. Let k ≥ 2 be an integer. If the expansion in base k
of a number is an Arnoux-Rauzy word, then it belongs to Subclass I
and the number is known to be transcendental. We prove the
transcendence of numbers with expansions in the subclasses II and
III.
},
author = {Kärki, Tomi},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Transcendental numbers; subword complexity; Rauzy graph.; transcendental numbers},
language = {eng},
month = {10},
number = {3},
pages = {459-471},
publisher = {EDP Sciences},
title = {Transcendence of numbers with an expansion in a subclass of complexity 2n + 1},
url = {http://eudml.org/doc/249703},
volume = {40},
year = {2006},
}
TY - JOUR
AU - Kärki, Tomi
TI - Transcendence of numbers with an expansion in a subclass of complexity 2n + 1
JO - RAIRO - Theoretical Informatics and Applications
DA - 2006/10//
PB - EDP Sciences
VL - 40
IS - 3
SP - 459
EP - 471
AB -
We divide infinite sequences of subword complexity 2n+1 into
four subclasses with respect to left and right special elements
and examine the structure of the subclasses with the help of Rauzy
graphs. Let k ≥ 2 be an integer. If the expansion in base k
of a number is an Arnoux-Rauzy word, then it belongs to Subclass I
and the number is known to be transcendental. We prove the
transcendence of numbers with expansions in the subclasses II and
III.
LA - eng
KW - Transcendental numbers; subword complexity; Rauzy graph.; transcendental numbers
UR - http://eudml.org/doc/249703
ER -
References
top- B. Adamczewski, Y. Bugeaud and F. Luca, Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris, Ser. I339 (2004) 11–14.
- B. Adamczewski and J. Cassaigne, On the transcendence of real numbers with a regular expansion. J. Number Theory103 (2003) 27–37.
- J.-P. Allouche, Nouveaux résultats de transcendence de réels à développements non aléatoire. Gazette des Mathématiciens84 (2000) 19–34.
- J.-P. Allouche and L.Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory69 (1998) 119–124.
- P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France119 (1991) 199–215.
- S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory67 (1997) 146–161.
- G.A. Hedlund and M. Morse, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math.62 (1940) 1–42.
- D. Ridout, Rational approximations to algebraic numbers. Mathematika4 (1957) 125–131.
- R.N. Risley and L.Q. Zamboni, A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith.95 (2000), 167–184.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.